|本期目录/Table of Contents|

[1]曹丁丁,陆利霞,熊晓辉.食品中四环素残留检测方法比较分析[J].生物加工过程,2020,18(05):636-641.[doi:10.3969/j.issn.1672-3678.2020.05.015]
 CAO Dingding,LU Lixia,XIONG Xiaohui.Comparison of detection methods for tetracycline residue in foods[J].Chinese Journal of Bioprocess Engineering,2020,18(05):636-641.[doi:10.3969/j.issn.1672-3678.2020.05.015]
点击复制

食品中四环素残留检测方法比较分析()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年05期
页码:
636-641
栏目:
出版日期:
2020-10-30

文章信息/Info

Title:
Comparison of detection methods for tetracycline residue in foods
文章编号:
1672-3678(2020)05-0636-06
作者:
曹丁丁陆利霞熊晓辉
南京工业大学 食品与轻工学院,江苏 南京 211800
Author(s):
CAO DingdingLU LixiaXIONG Xiaohui
College of Food Science and Light Industry,Nanjing Tech University,Nanjing 211800,China
关键词:
四环素 抗生素 食品安全 检测方法 比较分析
分类号:
TS207.3【additional_page=649】
DOI:
10.3969/j.issn.1672-3678.2020.05.015
文献标志码:
A
摘要:
四环素性质稳定、用途广泛,是常用的抗生素类药物之一。但是,此类药物由于使用不当,容易在食品中残留,从而危害人们的身体健康。本文中,笔者就四环素的相关检测方法进行了综述,介绍了电化学适配体传感器、荧光传感器、表面增强拉曼光谱、高效液相色谱、近红外光谱、酶联免疫技术、分子印迹技术以及表面等离子体共振等技术的优势与不足,并进行相关总结; 最后,提出了目前四环素检测方法存在的问题,如:检测样品种类局限、检测方法稳定性较差等,并对四环素未来的发展趋势进行了展望。
Abstract:
Tetracycline is one of the commonly used antibiotics because of its stability and broad spectrum. However,due to overuse or misuse of this antibiotic,its residue can be found in food,thus affecting human health. Here,we review tetracycline detection methods,introduced the advantages and disadvantages of electrochemical aptasensors,fluorescence sensors,surface enhanced Raman spectroscopy,high performance liquid chromatography,near-infrared reflectance spectroscopy,enzyme-linked immunosorbent assay,molecular imprinting techniques and surface plasmon resonance. Furthermore,we discuss the problems associated with current tetracycline detection methods,such as the limitation of detection samples,the poor stability of detection methods and future development of tetracycline detection.

参考文献/References:

[1] 匡光伟,孙志良,陈小军,等.四环素类抗菌药物在鸡粪中的降解研究[J].农业环境科学学报,2007,26(5):1784-1788.
[2] 庞国芳,方晓明,余建新,等.农药兽药残留现代分析技术[M].北京:科学出版社,2007:198-212.
[3] FERNANDEZGONZALEZ R,GARCIAFALCON M S,SIMALGANDARA J.Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry[J].Anal Chim Acta,2002,455(1):143-148.
[4] CINQUINA A L,LONGO F,ANASTASI G,et al.Validation of a high-performance liquid chromatography method for the determination of oxytetracycline,tetracycline,chlortetracycline and doxycycline in bovine milk and muscle[J].J Chromatogr A,2003,987(1/2):227-233.
[5] FURUSAWA N.Isolation of tetracyclines in milk using a solid-phase extracting column and water eluent[J].Talanta,2003,59(1):155-159.
[6] KIM Y J,KIM Y S,NIAZI J H,et al.Electrochemical aptasensor for tetracycline detection[J].Bioproc Biosyst Eng,2009,33(1):31-37.
[7] LENG F,ZHAO X J,WANG J,et al.Visual detection of tetracycline antibiotics with the turned on fluorescence induced by a metal-organic coordination polymer[J].Talanta,2013,107:396-401.
[8] ZHAO J H,YUAN H C,HONG Q,et al.Detection of tetracycline solution based on surface enhanced Raman spectroscopy.[J].J Food Safety Quality,2014:703-706.
[9] LIN L,GUO H B,LI Q,et al.Determination of tetracyclines residues in aquatic products by HPLC[J].Adv Mater Res,2014,1004-1005:914-918.
[10] JALALIAN S H,KARIMABADI N,RAMEZANI M,et al.Electrochemical and optical aptamer-based sensors for detection of tetracyclines[J].Trends Food Sci Technol,2018,73:45-57.
[11] TANG Y F,LIU P P,XU J,et al.Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline[J].Sensor Actuat B:Chem,2018,258:906-912.
[12] XU Q C,LIU Z N,FU J Y,et al.Ratiometric electrochemical aptasensor based on ferrocene and carbon nanofibers for highly specific detection of tetracycline residues[J].Sci Rep,2017,7(1):14729.
[13] BENVIDI A,YAZDANPARAST S,REZAEINASAB M,et al.Designing and fabrication of a novel sensitive electrochemical aptasensor based on poly(L-glutamic acid)/MWCNTs modified glassy carbon electrode for determination of tetracycline[J].J Electroanal Chem,2018,808:311-320.
[14] HE B S,YAN S S.Electrochemical aptasensor based on aptamer-complimentary strand conjugate and thionine for sensitive detection of tetracycline with multi-walled carbon nanotubes and gold nanoparticles amplification[J].Anal Methods,2018,10(7):783-790.
[15] MENG L L,CHEN B B,TONG Y,et al.One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline[J].Methods Appl Fluoresc,2017,5(1):015003.
[16] WANG J X,CHENG R J,WANG Y Y,et al.Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples[J].Sensor Actuat B:Chem,2018,263:533-542.
[17] SUN C Y,SU R F,BIE J X,et al.Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline[J].Dye Pigment,2018,149:867-875.
[18] XU J,SHEN X K,JIA L,et al.A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide:functionalized palygorskite nanomaterial[J].J Hazard Mater,2018,342:158-165.
[19] US.US Federal Regulations(CFR)Volume 21,Food and Drug Regulations,Section 556,Permissible Veterinary Drug Residues in Animal Foods[EB/OL].[2018-06-20].https://www.ecfr.gov/cgi-bin/text-idx?SID=d8e53cbf7d6f3685932ded5a90b10bd5&mc=true&node=pt21.6.556&rgn=div5.
[20] European Commission.On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin[EB/OL].[2018-06-20].https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN.
[21] ZHOU C,ZOU H M,SUN C J,et al.Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex[J].Anal Bioanal Chem,2018,410(12):2981-2989.
[22] KAZEMI-ZANJANI N,SHAYEGANNIA M,PRINJA R,et al.Multiwavelength surface-enhanced Raman spectroscopy using rainbow trapping in width-graded plasmonic gratings[J].Adv Opt Mater,2018,6(4):1701136.
[23] LI H H,CHEN Q S,MEHEDI HASSAN M,et al.A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J].Biosens Bioelectron,2017,92:192-199.
[24] DHAKAL S,CHAO K L,HUANG Q,et al.A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole milk[J].Sensors,2018,18(2):424.
[25] ZHAO J H,LIU P,YUAN H C,et al.Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J].J Spectrosc,2016,DOI:10.1155/2016/1845237.
[26] DESMARCHELIER A,ANIZAN S,MINH TIEN M,et al.Determination of five tetracyclines and their epimers by LC-MS/MS based on a liquid-liquid extraction with low temperature partitioning[J].Food Addit Contam,2018,35(4):686-694.
[27] ISLAS G,RODRIGUEZ J A,PEREZ-SILVA I,et al.Solid-phase extraction and large-volume sample stacking-capillary electrophoresis for determination of tetracycline residues in milk[J].J Anal Methods Chem,2018,DOI:10.1155/2018/5394527.
[28] WANG S S,ZHANG J F,LI C Y,et al.Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal-organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry[J].J Sep Sci,2018,41(12):2604-2612.
[29] PéREZ-RODRíGUEZ M,PELLERANO R G,PEZZA L,et al.An overview of the main foodstuff sample preparation technologies for tetracycline residue determination[J].Talanta,2018,182:1-21.
[30] KAYNAKER M,ANTEP M,MERDIVAN M.Determination of tetracyclines in milk,eggs and honey using in situ ionic liquid based dispersive liquid-liquid microextraction[J].J Anal Chem,2018,73(1):23-29.
[31] XU H,MI H Y,GUAN M M,et al.Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction[J].Food Chem,2017,232:198-202.
[32] LIAN L L,LV J,WANG X Y,et al.Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples[J].J Chromatogr A,2018,1534:1-9.
  
[33] YU Y W,FAN Z F.Determination of tetracyclines in bovine milk using laccaic acid-loaded magnetite nanocomposite for magnetic solid-phase extraction[J].J Chromatogr Sci,2017,55(4):484-490.
[34] ZHOU S D,TANG J Q,JIA B,et al.Preparation of hydrophilic polymer brushes magnetic microspheres by surface-initiated for magnetic dispersive solid phase extraction of tetracycline antibiotic residues from honey[J].Chin J Chromatogr,2018,36(2):85-93.
[35] WEI D,WU S C,ZHU Y.Magnetic solid phase extraction based on graphene oxide/nanoscale zero-valent iron for the determination of tetracyclines in water and milk by using HPLC-MS/MS[J].RSC Adv,2017,7(70):44578-44586.
[36] SHI W L,LV H,YUAN S L,et al.Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/AgBr nanocomposites[J].Sep Purif Technol,2017,174:75-83.
[37] WU N,XU C S,YANG R J,et al.Detection of tetracycline in milk using NIR spectroscopy and partial least squares[J].IOP Conf Ser:Earth Environ Sci,2018,113:012004.
[38] JAYALAKSHMI K,PARAMASIVAM M,SASIKALA M,et al.Review on antibiotic residues in animal products and its impact on environments and human health[J].J Entomol Zool Stud,2017,5(3):1446-1451.
[39] KORKMAZ S D,KUPLULU O,CIL G I,et al.Detection of sulfonamide and tetracycline antibiotic residues in Turkish pine honey[J].Int J Food Prop,2017,20(sup1):S50-S55.
[40] CHEN Y N,KONG D Z,LIU L Q,et al.Development of an ELISA and immunochromatographic assay for tetracycline,oxytetracycline,and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody[J].Food Anal Methods,2016,9(4):905-914.
[41] LAN L Y,YAO Y,PING J F,et al.Recent advances in nanomaterial-based biosensors for antibiotics detection[J].Biosens Bioelectron,2017,91:504-514.
[42] WANG S,DONG Y Y,LIANG X G.Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples[J].Biosens Bioelectron,2018,109:1-7.
[43] YANG X,HE Y,WANG X L,et al.A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+[J].Appl Surf Sci,2017,416:581-586.

相似文献/References:

[1]吴艳,张娟琨,范婷,等.核酸适体生物传感器快速检测牛奶中抗生素[J].生物加工过程,2010,8(03):48.[doi:10.3969/j.issn.1672-3678.2010.03.010]
 WU Yan,ZHANG Juan-kun,FAN Ting,et al.Fast detection of antibiotics in milk by aptamer biosensor[J].Chinese Journal of Bioprocess Engineering,2010,8(05):48.[doi:10.3969/j.issn.1672-3678.2010.03.010]
[2]张彬彬,张娟琨,曾志鹏,等.多孔硅适配子生物传感器的电化学研究[J].生物加工过程,2011,9(01):55.[doi:10.3969/j.issn.1672-3678.2011.01.013]
 ZHANG Binbin,ZHANG Juankun,ZENG Zhipeng,et al.Electrochemical study of aptamer biosensor on nano porous silicon[J].Chinese Journal of Bioprocess Engineering,2011,9(05):55.[doi:10.3969/j.issn.1672-3678.2011.01.013]
[3]孙雯,黄和,林海龙,等.抗生素对雨生红球藻无菌化培养的影响[J].生物加工过程,2015,13(04):11.[doi:10.3969/j.issn.1672-3678.2015.04.003]
 SUN Wen,HUANG He,LIN Hailong,et al.Effects of antibiotics on axenic culture from Haematococcus pluvialis[J].Chinese Journal of Bioprocess Engineering,2015,13(05):11.[doi:10.3969/j.issn.1672-3678.2015.04.003]
[4]姜思,刘莹莹,佟少明.4种常用抗生素对莱茵衣藻生长及光化学活性的影响[J].生物加工过程,2017,15(02):13.[doi:10.3969/j.issn.1672-3678.2017.02.003]
 JIANG Si,LIU Yingying,TONG Shaoming.Effects of four antibiotics on growth and photochemical activities of Chlamydomonas reinhardtii[J].Chinese Journal of Bioprocess Engineering,2017,15(05):13.[doi:10.3969/j.issn.1672-3678.2017.02.003]

备注/Memo

备注/Memo:
收稿日期:2018-06-21修回日期:2018-09-05
基金项目:江苏省重点研发计划(BE2016803)
作者简介:曹丁丁(1995—),女,江苏南通人,硕士研究生,研究方向:食品科学; 熊晓辉(联系人),教授,E-mail:xxh@njtech.edu.cn
引文格式:曹丁丁,陆利霞,熊晓辉.食品中四环素残留检测方法比较分析[J].生物加工过程,2020,18(5):636-641.
CAO Dingding,LU Lixia,XIONG Xiaohui.Comparison of detection methods for tetracycline residue in foods[J].Chin J Bioprocess Eng,2020,18(5):636-641..
更新日期/Last Update: 2020-09-30