|本期目录/Table of Contents|

[1]姚童言 1,黄绵松 2,宋亚康 1,等.潮土地区长期菇渣化肥配施玉米和小麦产量及稳定性的研究[J].生物加工过程,2020,18(03):1-7.
 YAO Tongyan,HUANGMiansong,SONG Yakang,et al.Effects of long-term combined application of mushroom residues and mineral fertilizers on maize and wheat yield and yield stability in a sandy loam soil[J].Chinese Journal of Bioprocess Engineering,2020,18(03):1-7.
点击复制

潮土地区长期菇渣化肥配施玉米和小麦产量及稳定性的研究()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年03期
页码:
1-7
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Effects of long-term combined application of mushroom residues and mineral fertilizers on maize and wheat yield and yield stability in a sandy loam soil
作者:
姚童言 1 黄绵松 2 宋亚康 1 陈瑞蕊 1 冯有智 1
1. 中国科学院 南京土壤研究所 土壤与农业可持续发展国家重点实验室,江苏 南京 210008;2.北京首创股份有限公司,北京 100044
Author(s):
YAO Tongyan1 HUANGMiansong2 SONG Yakang1CHEN Ruirui1FENG Youzhi1
1.State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;2.Beijing Capital Company Limited,Beijing 100044,China
关键词:
有机无机配施菇渣产量玉米小麦
文献标志码:
A
摘要:
菇渣是一种常见的有机废弃物,质地疏松,含有丰富的有机质和养分,作为微生物“过腹”后的有机物料,具备了生物有机肥的优点。菇渣作为有机肥,长期施用后对粮食作物产量、产量稳定性的影响尚没有系统研究。本研究中,笔者利用河南省封丘县农业生态实验站长期定位实验(2011年至今)开展玉-麦轮作条件下,不施肥(Control)、平衡施化肥(F处理),菇渣化肥配施(MRF处理)和鸡粪化肥配施(CMF处理)对作物产量影响的研究。研究结果表明:与不施肥处理的产量相比,连续施肥6年后,F处理玉米和小麦分别增产3.09倍和2.56倍,CMF处理玉米和小麦分别增产3.00倍和3.59倍,MRF处理玉米和小麦分别增产4.53倍和4.32倍。有机无机配施的增产效果优于单施化肥,而菇渣化肥配施的增产效果优于鸡粪化肥配施。施肥处理均有提高作物产量稳定性的趋势,其中菇渣化肥配施处理显著提高了小麦产量的稳定性。同时,还发现该地区土壤有机碳在4.5~8 g/kg时,玉米、小麦产量与土壤有机碳含量呈线性正相关,增加土壤有机碳含量对玉米增产效果为小麦的两倍;土壤有机碳含量大于8 g/kg时,产量不再显著增加。以上结果表明,菇渣是一种优良的生物有机肥资源,在低有机碳含量的土壤中,菇渣化肥配施能增加作物产量和产量稳定性,增产效果优于其他施肥处理。当土壤有机碳含量增加到一定数值后,继续施用有机肥对产量影响不大,可以考虑减施或不施;同时,应重视玉米季有机肥的施用。
Abstract:
Mushroom residues are a widespread type of organic waste with a porous structure, containing abundant organic matter and nutrients.Mushroom residues have many advantages of bio-organic fertilizers due to the fermentation processes with fungi. There is lack of studies on the effects of applying mushroom residues as organic fertilizers on crop yield and yield stability.This was investigated in the current study with a long-term (7-year) plot experiment, which was located at the Fengqiu Agroecological Experimental Station, Henan province, China. The experiment was conducted under a rotation of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) with four fertilization regimes: mineral fertilizers(F), mushroom residues combined with mineral fertilizers (MRF), composted manure combined with mineral fertilizers (CMF) and the Control without fertilization.After continuous fertilization for 6 years, the F treatment showed a 3.09-fold and 2.56-fold increase of maize and wheat yield, the CMF treatment showed a 3.00-fold and 3.59-fold increase, and the MRF treatment showed a 4.53-fold and 4.32-fold, as compared with Control. All fertilization treatments had a trend to improve yield stability; especially the yield stability of wheat was significantly higher in the MRF treatment than in the Control. It was also found that crop yield was positively correlated with soil organic carbon (SOC) content when SOC ranged between 4.5 and 8g/kg. Crop yield didn’t significantly increase when SOC content was over 8 g/kg. Our results suggest that mushroom residues combined with mineral fertilizers highly improved crop yield and yield stability. The yield increase of mushroom residues was greater than the composted manure. When SOC content was over the critical value, the application of organic amendments can be reduced or stopped.

参考文献/References:


[1] CHEN J H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility[C]//International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. Land Development Department Bangkok Thailand, 2006, 16: 20.
[2] M?DER P, FLIESSBACH A, DUBOIS D, et al. Soil fertility and biodiversity in organic farming[J]. Science, 2002, 296: 1694-1697.
[3] RASOOL R, KUKAL S S, HIRA G S. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize–wheat system[J]. Soil and Tillage Research, 2008, 101(1-2): 31-36.
[4] SEUFERT V, RAMANKUTTY N, FOLEY J A. Comparing the yields of organic and conventional agriculture[J]. Nature, 2012, 485(7397): 229-232.
[5] SILVA S O, COSTA S M G, CLEMENTE E. Chemical composition of Pleurotuspulmonarius (Fr.) Quél., substrates and residue after cultivation[J]. Brazilian Archiv Biology Technol, 2002, 45(4): 531-535.
[6] DE MENEZES T A, DA ROCHA BISPO A S, KOBLITZ M G B, et al. Production of basidiomataand ligninolytic enzymes by the lingzhior reishimedicinal mushroom, Ganoderma lucidum (Agaricomycetes), in Licuri (Syagruscoronata) wastes in Brazil[J]. IntJMedic Mushrooms, 2016, 18(12):1141-1149.
[7] HU Y, ZHU M, TIAN G, et al. Isolation of a protease-resistant and pH-stable α-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agaricusbisporus[J]. IntMournalBiologMacromol, 2017, 104: 576-583.
[8] LU X J, FENG B M, CHEN S F, et al. Three new amino acid derivatives from edible mushroom Pleurotusostreatus[J]. J Asian Nat Product Res, 2017, 19(12): 1160-1171.
[9] RUSSO L, RIZZO L, BELGIORNO V. Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo (a) pyrene removal from contaminated soil[J]. Chemosphere, 2012, 87(6): 595-601.
[10] LI F L, WANG H P, ZHANG Q, et al. Effect of mushroom residue on soil property and crop and research progress in its recycling[J]. J Agric Sci Technol (Beijing), 2015, 17(3): 100-106.
[11] 卫智涛, 周国英, 胡清秀. 食用菌菌渣利用研究现状[J]. 中国食用菌, 2010, 29(5):3-6.
[12] 马力, 杨林章, 沈明星, 等. 基于长期定位试验的典型稻麦轮作区作物产量稳定性研究[J]. 农业工程学报, 2011, 27(4):117-124.
[13] GAO X, LAN T, DENG L, et al. Mushroom residue application affects CH4 and N2O emissions from fields under rice–wheat rotation[J]. ArchivAgron Soil Sci, 2017, 63(6): 748-760.
[14] GHIMIRE R, ADHIKARI K R, CHEN Z S, et al. Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation system[J]. Paddy Water Environ, 2012, 10(2): 95-102.
[15] 鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社. 1999: 107.
[16] LAL R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands[J]. Land Degrad Develop, 2006, 17(2): 197-209.
[17] ZHANG X, SUN N, WU L, et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat-maize cropping systems in China[J]. Sci Total Environ, 2016, 562: 247-259.
[18] SEREMESIC S, MILOSEV D, DJALOVIC I, et al. Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat[J]. Plant Soil Environ, 2011, 57(5): 216-221.
[19] 魏猛, 张爱君, 诸葛玉平, 等. 长期不同施肥对黄潮土区玉米产量稳定性的影响[J]. 华北农学报, 2016, 31(6): 171-176.
[20] ALTIERI M A, NICHOLLS C I. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems[J]. Soil Tillage Res, 2003, 72(2): 203-211.
[21] AMIN M, AHMAD R, ALI A, et al. Influence of silicon fertilization on maize performance under limited water supply[J]. Silicon, 2018, 10(2): 177-183.
[22] 丁能飞, 郭彬, 林义成, 等. 施用菇渣对盐胁迫下大麦苗期抗氧化酶活性及离子吸收的影响[J]. 浙江农业科学, 2018, 59(10):75-78+86.
[23] 熊小兴, 王飞, 李小毛, 等. 菇渣发酵有机肥在小白菜上的应用试验[J]. 江西农业学报, 2009, 21(7).
[24] 陈世昌, 常介田, 吴文祥, 等. 菌渣还田对梨园土壤性状及梨果品质的影响[J]. 核农学报, 2012, 26(5): 821-827.
[25] 张亚军, 杨建北, 李建宏,等. 香菇渣和平菇渣对土壤有机质、氮素及全磷含量的影响[J]. 广东农业科学, 2012, 39(13):66-69.
[26] 张秀珍, 刘秉儒, 黄国勇,等. 施用双孢蘑菇菌渣条件下不同开垦年限土壤理化性质与养分特性变化[J]. 中国农学通报, 2012, 28(15):78-82.
[27] 王根茂. 菌糠作为有机肥对玉米—小麦轮作下土壤理化性质和作物生长的影响[D]. 河南农业大学, 2011.
[28] 郭宏敏, 陈世昌, 徐明辉, 等. 施用菇渣对土壤微生物, 土壤肥力及夏玉米产量的影响[J]. 河南农业科学, 2013, 42(7): 61-64.

备注/Memo

备注/Memo:
收稿日期:2019-04-17 修回日期:2019-05-06基金项目:中国科学院重点部署项目(KFZD-SW-112-03-04);中国科学院南京土壤研究所“一三五”计划和领域前沿项目知识创新工程领域前沿项目课题(ISSASIP1639);固原海绵城市建设及运营关键技术研究项目(SCHM-2018)作者简介:姚童言(1994—),女,安徽淮北人,硕士研究生,研究方向:土壤微生物学;陈瑞蕊(联系人),研究员,E-mail:rrchen@issas.ac.cn
更新日期/Last Update: 2020-03-18