|本期目录/Table of Contents|

[1]朱静怡,杨军星,武明豪,等.基于树状大分子的纳米抗癌药物研究进展[J].生物加工过程,2020,18(03):346-353.[doi:10.3969/j.issn.1672-3678.2020.03.012]
 ZHU Jingyi,YANG Junxing,WU Minghao,et al.Progress in dendrimer-based anticancer nanomedicine[J].Chinese Journal of Bioprocess Engineering,2020,18(03):346-353.[doi:10.3969/j.issn.1672-3678.2020.03.012]
点击复制

基于树状大分子的纳米抗癌药物研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年03期
页码:
346-353
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Progress in dendrimer-based anticancer nanomedicine
文章编号:
1672-3678(2020)03-0346-08
作者:
朱静怡1杨军星1武明豪2黄和1
1. 南京工业大学 药学院,江苏 南京 211800; 2. 天津医科大学肿瘤医院 国家肿瘤临床医学研究中心,天津 300060
Author(s):
ZHU Jingyi1YANG Junxing1WU Minghao2HUANG He1
1. School of Pharmaceutical Sciences,Nanjing Tech University,Nanjing 211800,China; 2. National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060,China
关键词:
树状大分子 纳米载体 抗癌药物 生物医学应用
分类号:
O64
DOI:
10.3969/j.issn.1672-3678.2020.03.012
文献标志码:
A
摘要:
树状大分子基于其高度支化的结构及可调控性,良好的理化性质、单分散性及生物相容性,近几年已普遍用于构建多种纳米抗肿瘤药物,目前树状大分子已成为抗癌药物的研究热点。本文中,笔者主要对近年来基于树状大分子的纳米抗癌药物,包括化学、基因、放射性、光热、光动力抗癌药物的构建及其抗癌应用进行综述,为构建新型抗肿瘤药物提供参考。
Abstract:
Based on the highly branched structure,well controlled property,excellent physicochemical property,monodispersity and biocompatibility,dendrimer has been widely used to construct various anticancer nanomedicines.At present,dendrimer has been the hot research topic in the field of anticancer drugs.In this review,dendrimer-based anticancer nanomedicine,including the construction and anticancer application of chemical,genetic,radioactive,photothermal,and photodynamic anticancer drugs in recent years are summarized,to provide basis for novel anticancer drug.

参考文献/References:

[1] BRAY F,JEMAL A,GREY N,et al.Global cancer transitions according to the human development index(2008-2030):a population-based study[J].Lancet Oncol,2012,13(8):790-801.
[2] MAEDA H,BHARATE G Y,DARUWALLA J.Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect[J].Eur J Pharm Biopharm,2009,71:409-419.
[3] LEE C C,MACKAY J A,FRECHET J M,et al.Designing dendrimers for biological applications[J].Nat Biotechnol,2005,23:1517-1526.
[4] ZHU J Y,SHI X Y.Dendrimer-based nanodevices for targeted drug delivery applications[J].J Mater Chem B,2013,1:4199-4211.
[5] AULENTA F,HAYES W,RANNARD S.Dendrimers:a new class of nanoscopic containers and delivery devices[J].Eur Polym J,2003,39:1741-1771.
[6] DUFES C,UCHEGBU I F,SCHATZLEIN A G.dendrimers in gene delivery[J].Adv Drug Deliv Rev,2005,57:2177-2202.
[7] GUPTA V,NAYAK S K.Dendrimers:a review on synthetic approaches[J].J Appl Pharm Sci,2015,5(3):117-122.
[8] MIGNANI S,El KAZZOULI S,BOUSMINA M.Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems:a concise overview[J].Adv Drug Deliv Rev,2013,65:1316-1330.
[9] STIRIBA S E,FREY H,HAAG R.Dendritic polymers in biomedical applications:from potential to clinical use in diagnostics and therapy[J].Angew Chem Int Ed,2002,41:1329-1334.
[10] TOMALIA D A.Birth of a new macromolecular architecture:dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry[J].Prog Polym Sci,2005,30:294-324.
[11] TOMALIA D A,FRECHET J M.Discovery of dendrimers and dendritic polymers:a brief historical perspective[J].J Polym Sci Pol Chem,2002,40:2719-2728.
[12] TOMALIA D A,HALL M,HEDSTRAND D M.Starburst dendrimers:III.the importance of branch junction symmetry in the development of topological shell molecules[J].J Am Chem Soc,1987,109:1601-1603.
[13] CHENG W,LIANG C,XU L,et al.TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance[J].Small,2017,DOI:10.1002/smll.201700623.
[14] JI W,SUN B,SU C.Targeting microRNAs in cancer gene therapy[J].Genes,2017,DOI:10.3390/genes8010021.
[15] ZHU J,ZHAO L,CHENG Y,et al.Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors[J].Nanoscale,2015,7:18169.
[16] KIM J,CHO H R,JEON H,et al.Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer[J].J Am Chem Soc,2017,139:10992-10995.
[17] LU Z,HUANG F Y,CAO R,et al.Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy[J].Sci Rep,2017,doi:10.1038/srep41571.
[18] GUO R,SHI X.Dendrimers in cancer therapeutics and diagnosis[J].Curr Drug Metab,2012,13:1097-1109.
[19] WANG Y,GUO R,CAO X.Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine)dendrimers for targeted cancer therapy[J].Biomaterials,2011,32:3322-3329.
[20] KURUVILLA S P,TIRUCHINAPALLY G,ElAZZOUNY M,et al.N-Acetylgalactosamine-targeted delivery of dendrimer-doxorubicin conjugates influences doxorubicin cytotoxicity and metabolic profile in hepatic cancer cells[J].Adv Healthc Mater,2017,doi:10.1002/adhm.201601046.
[21] SHI X,LEE I,CHEN X,et al.Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers[J].Soft Matter,2010,6(11):2539-2545.
[22] MORGAN M T,NAKANISHI Y,KROLL D J,et al.Dendrimer-encapsulated camptothecins:increased solubility,cellular uptake,and cellular retention affords enhanced anticancer activity in vitro[J].Cancer Res,2006,66:11913-11921.
[23] ZHU J,XIONG Z,SHEN M,et al.Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells[J].RSC Adv,2015,5:30286-30296.
[24] FOX M E,GUILLAUDEU S,FRECHET J M J,et al.Synthesis and in vivo antitumor efficacy of PEGylated poly(L-lysine)dendrimer-camptothecin conjugates[J].Mol Pharm,2009,6(5):1562-1572.
[25] ZHU J Y,FU F F,XIONG Z J,et al.Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells[J].Colloids Surf B,2015,133:36-42.
[26] ZHU J,ZHENG L,WEN S,et al.Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles[J].Biomaterials,2014,35(26):7635-7646.
[27] SCHIRRMACHER V,FOURNIER P.Newcastle disease virus:a promising vector for viral therapy,immune therapy,and gene therapy of cancer[J].Methods Mol Biol,2009,542:565-605.
[28] MINI THOMAS A M K.Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells[J].Proc Natl Acad Sci USA,2002,99(23):14640-14645.
[29] URBAN K B,WERTH S,ABUHARBEID S,et al.RNAi-mediated gene-targeting through systemic application of polyethylenimine(PEI)-complexed siRNA in vivo[J].Gene Therapy,2005,12(5):461-466.
[30] ZINTCHENKO A,PHILIPP A,DEHSHAHRI A,et al.Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity[J].Bioconjug Chem,2008,19(7):1448-1455.
[31] YANG S,YANG X,LIU Y,et al.Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine:an efficient vehicle for antisense oligonucleotide delivery[J].Colloids Surf B,2015,135:274-282.
[32] HOU W,WEI P,KONG L,et al.Partially PEGylated dendrimer-entrapped gold nanoparticles:a promising nanoplatform for highly efficient DNA and siRNA delivery[J].J Mater Chem B,2016,4(17):2933-2943.
[33] KRAMER-MAREK G,CAPALA J.The role of nuclear medicine in modern therapy of cancer[J].Tumor Biol,2012,33(3):629-640.
[34] KASSIS A I,ADELSTEIN S J.Radiobiologic principles in radionuclide therapy[J].J Nucl Med,2005,46(S1):4S-12S.
[35] ZHAO L,ZHU J,CHENG Y,et al.Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide I-131 for single photon emission computed tomography imaging and radiotherapy of gliomas[J].ACS Appl Mater Interfaces,2015,7(35):19798-19808.
[36] MELAMED J R,EDELSTEIN R S,DAY E S.Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy[J].ACS Nano,2015,9(1):6-11.
[37] SVAASAND L O,GOMER C J,MORINELI E.On the physical rationale of laser induced hyperthermia[J].Lasers Med Sci,1990,5(2):121-128.
[38] ZHOU Z,WANG Y,YAN Y,et al.Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumor ablation[J].ACS Nano,2016,10(4):4863-4872.
[39] WEI P,CHEN J,HU Y,et al.Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging,photothermal therapy,and gene silencing of tumors[J].Adv Healthc Mater,2016,5(24):3203-3213.
[40] CHUNG U S,KIM J H,KIM B,et al.Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy[J].Chem Commun,2016,52(6):1258-1261.
[41] SUN Y,CHEN Z L,YANG X X,et al.Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy[J].Nanotechnology,2009,20(13):135102.
[42] CHEN Z L,SUN Y,HUANG P,et al.Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy[J].Nanoscale Res Lett,2009,4(5):400-408.
[43] BATTAH S,BALARATNAM S,CASAS A,et al.Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates[J].Mol Cancer Ther,2007,6(3):876-885.
[44] ZHANG G D,HARADA A,NISHIYAMA N,et al.Polyion complex micelles entrapping cationic dendrimer porphyrin:effective photosensitizer for photodynamic therapy of cancer[J].J Control Release,2003,93(2):141-150.

备注/Memo

备注/Memo:
收稿日期:2018-09-28修回日期:2019-10-04
基金项目:国家自然科学基金(21807059); 江苏省自然科学基金(BK20180711); 江苏省高等学校自然科学研究面上项目(17KJB350005)
作者简介:朱静怡(1988—),女,湖北十堰人,博士,讲师,研究方向:仿生材料,E-mail:zhujy1210@njtech.edu.cn
引文格式:朱静怡,杨军星,武明豪,等.基于树状大分子的纳米抗癌药物研究进展[J].生物加工过程,2020,18(3):346-353.
ZHU Jingyi,YANG Junxing,WU Minghao,et al.Progress in dendrimer-based anticancer nanomedicine[J].Chin J Bioprocess Eng,2020,18(3):346-353..
更新日期/Last Update: 2020-05-30