|本期目录/Table of Contents|

[1]王慧阳,秦靖,庄丹,等.蜗牛黏液多糖的提取、表征及抗氧化性和免疫活性[J].生物加工过程,2020,18(03):324-331.[doi:10.3969/j.issn.1672-3678.2020.03.009]
 WANG Huiyang,QIN Jing,ZHUANG Dan,et al.Isolation,characterization,antioxidant and immunomodulating activity of polysaccharides from Achatina fulica mucus[J].Chinese Journal of Bioprocess Engineering,2020,18(03):324-331.[doi:10.3969/j.issn.1672-3678.2020.03.009]
点击复制

蜗牛黏液多糖的提取、表征及抗氧化性和免疫活性()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年03期
页码:
324-331
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Isolation,characterization,antioxidant and immunomodulating activity of polysaccharides from Achatina fulica mucus
文章编号:
1672-3678(2020)03-0324-08
作者:
王慧阳1秦靖2庄丹2刘春尧2张艺1张立慧1吕广萍23
1.南京工业大学 生物与制药工程学院,江苏 南京 211800; 2.南京工业大学 药学院,江苏 南京 211800; 3.中国中医科学院 中药资源中心,北京 100700
Author(s):
WANG Huiyang1QIN Jing2ZHUANG Dan2LIU Chunyao2ZHANG Yi1ZHANG Lihui1L? Guangping 23
1.School of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China; 2.School of Pharmaceutical Sciences,Nanjing Tech University,Nanjing 211800,China; 3.National Resource Center for Chinese Materia Medica,China Academy of
关键词:
蜗牛黏液 多糖 结构表征 抗氧化 免疫调节活性
分类号:
R284
DOI:
10.3969/j.issn.1672-3678.2020.03.009
文献标志码:
A
摘要:
利用高效凝胶色谱串联紫外、示差和多角度激光散射检测器(HPSEC-UV-RI-MALLS )对蜗牛黏液中的多糖进行分子量分布表征。利用气相色谱串联质谱(GC-MS)和红外光谱(FT-IR)对其化学结构进行表征; 并对所获得的多糖进行抗氧化及免疫活性的评价。结果显示:蜗牛黏液中主要含有5个组分的多糖,是其重要的活性成分。对这5个多糖进行鉴定,其平均分子量为4.549×106、1.392×105、6.291×104、5.262×104 和4.153×104 。单糖由岩藻糖、甘露糖、葡萄糖和半乳糖组成,摩尔比为1.69:2.46:0.12:1。多糖主链为→2)Manp-(1→,→3)Fucp-(1→和→3)Manp-(1→。此外,蜗牛黏液多糖具有明显的抗氧化作用,能很好地清除ABTS·+和·OH,IC50值分别为2.35和4.70 mg/mL; 且能明显增强巨噬细胞(RAW264.7)的吞噬能力,促进NO和白细胞介素(IL-6)、肿瘤坏死因子(TNF-α)等免疫细胞因子的释放。
Abstract:
Polysaccharide is one of important bioactive components in Achatina fulica mucus.In this study, the polysaccharides in A. fulica mucus were isolated,and the high performance size exclusion chromatography coupled to ultraviolet detector-refractive index detector-multi-angle laser light scattering(HPSEC-UV-RI-MALLS)was developed to evaluate the molecular weights distribution.The chemical structure including monosaccharide composition and glycosidic linkage were characterized by gas chromatography mass spectrometry(GC-MS).The results show that there mainly contained 5 polysaccharides, and they were important active components. We identified the structures of the five polysaccharides, and the average molecular weights were 4.549×106,1.392×105,6.291×104,5.262×104 and 4.153×104. The monosaccharides were of fucose,mannose,glucose,and galactose in the molar ratio of 1.69:2.46:0.12:1. And the backbone of the most abundant polysaccharide was composed by →2)Manp-(1→,→3)Fucp-(1→ and →3)Manp-(1→. Furthermore,the A. fulica mucus polysaccharides exhibited significantly antioxidant effect. They could remove ABTS·+ and hydroxyl radicals well, and the half-inhibitory concentration was 2.35 and 4.70 mg/mL. The in vitro experiments show that it could enhance the ability of devouring FITC-dextran of peritoneal macrophages and promote the release of nitric oxide and immune reactive molecules such as interleukin(IL)-6 and tumor necrosis factor(TNF)-α.

参考文献/References:

[1] ZHONG J,WANG W H,YANG X M,et al.A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica[J].Peptides,2013,39:1-5.
[2] MITRA D,SARKAR M,ALLEN A K.Purification and characterization of an agglutinin from mucus of the snail Achatina fulica[J].Biochimie,1988,70(12):1821-1829.
[3] E-KOBON T,THONGARARM P,ROYTRAKUL S,et al.Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions[J].Comput Struct Biotechnol J,2016,14:49-57.
[4] PITT S J,GRAHAM M A,DEDI C G,et al.Antimicrobial properties of mucus from the brown garden snail Helix aspersa[J].Br J Biomed Sci,2015,72(4):174-181.
[5] HARTI A S,MURHARYATI A,DWI SULISETYAWATI S,et al.The effectiveness of snail mucus(Achatina fulica)and chitosan toward limfosit proliferation in vitro [J].Asian J Pharm Clin Res,2018,11(15):81-85.
[6] TSOUTSOS D,KAKAGIA D,TAMPAROPOULOS K.The efficacy of Helix aspersa Müller extract in the healing of partial thickness burns:a novel treatment for open burn management protocols[J].J Dermatolg Treat,2009,20(4):219-222.
[7] AYYAGARI V S,NARAVULA J,SREERAMA K.Optimization of the isolation procedure of genomic DNA from a mucus laden pulmonate gastropod,Achatina fulica[J].Natl Acad Sci Lett 2017,40(2):109-112.
[8] VIEIRA T C R G,COSTA-FILHO A,SALGADO N C,et al.Acharan sulfate,the new glycosaminoglycan from Achatina fulica Bowdich 1822[J].Eur J Biochem,2004,271(4):845-854.
[9] ITO S,SHIMIZU M,NAGATSUKA M,et al.High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica[J].Biosci Biotechnol Biochem,2011,75(1):20-25.
[10] SANTANA W A,DE MELO C M,CARDOSO J C,et al.Assessment of antimicrobial activity and healing potential of mucous secretion of Achatina fulica[J].Int J Morphol,2012,30(2):365-373.
[11] LI S P,WU D T,LV G P,et al.Carbohydrates analysis in herbal glycomics[J].TrAC Trends Anal Chem,2013,52(12):155-169.
[12] EHARA T,KITAJIMA S,KANZAWA N,et al.Antimicrobial action of achacin is mediated by L-amino acid oxidase activity[J].FEBS Lett,2002,531(3):509-512.
[13] OGAWA M,NAKAMURA S,ATSUCHI T,et al.Macromolecular antimicrobial glycoprotein,achacin,expressed in a methylotrophic yeast Pichia pastoris[J].FEBS Lett,1999,448(1):41-44.
[14] LIU J,SHANG F N,YANG Z M,et al.Structural analysis of a homogeneous polysaccharide from Achatina fulica[J] .Int J Biol Macromol,2017,98:786-792.
[15] LIAO N B,CHEN S G,YE X Q,et al.Structural characterization of a novel glucan from Achatina fulica and its antioxidant activity[J].J Agric Food Chem,2014,62(11):2344-2352.
[16] ZHA X Q,XIAO J J,ZHANG H N,et al.Polysaccharides in Laminaria japonica(LP):extraction,physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis[J].Food Chem,2012,134(1):244-252.
[17] CHEN H X,ZHANG M,XIE B J.Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties[J].J Agric Food Chem,2004,52(11):3333-3336.
[18] LV G P,HU D J,CHEONG K L,et al.Decoding glycome of Astragalus membranaceus based on pressurized liquid extraction,microwave-assisted hydrolysis and chromatographic analysis[J].J Chromatogr A,2015,1409:19-29.
[19] WU D T,MENG L Z,WANG L Y,et al.Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis[J].Carbohydr Polym,2014,110:405-414.
[20] LI S,LI J H,ZHI Z J,et al.Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers[J].Carbohydr Polym,2017,173:330-337.
[21] DI T,CHEN G J,SUN Y,et al.Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra[J].J Funct Foods,2017,28:64-75.
[22] SMIRNOFF N,CUMBES Q J.Hydroxyl radical scavenging activity of compatible solutes[J].Phytochemistry,1989,28(4):1057-1060.
[23] YUAN Q X,ZHAO L Y,CHA Q Q,et al.Structural characterization and immunostimulatory activity of a homogeneous polysaccharide from Sinonovacula constricta[J].J Agric Food Chem,2015,63(36):7986-7994.
[24] ZHANG L,HU Y,DUAN X Y,et al.Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms[J].Int J Biol Macromol,2018,113:1-7.
[25] KUBOTA Y,WATANABE Y,OTSUKA H,et al.Purification and characterization of an antibacterial factor from snail mucus[J].Comp Biochem Physiol Part C:Comp Pharmacol,1985,82(2):345-348.
[26] CHEN R Z,LIU Z Q,ZHAO J M,et al.Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu[J].Food Chem,2011,127(2):434-440.
[27] ZENG X T,LI P Y,CHEN X,et al.Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J].Int J Boil Macromol,2019,126:867-876.
[28] QIAO D L,WEI C B,CHEN N D,et al.Influences of Hyriopsis cumingii polysaccharides on mice immunosignaling molecules and T lymphocyte differentiation[J].Food Agric Immunol,2017,28(4):586-598.

相似文献/References:

[1]梁大勇,黄芳,赵晨,等.桑黄粗多糖除蛋白及抗肿瘤活性[J].生物加工过程,2012,10(03):56.[doi:10.3969/j.issn.1672-3678.2012.03.011]
 LIANG Dayong,HUANG Fang,ZHAO Chen,et al.Deproteinization and antitumor activity of Phellinus igniarius crude polysaccharides[J].Chinese Journal of Bioprocess Engineering,2012,10(03):56.[doi:10.3969/j.issn.1672-3678.2012.03.011]
[2]邓添华,张静,黄达彬,等.莲子多糖的结构分析及抗氧化活性[J].生物加工过程,2012,10(06):47.[doi:10.3969/j.issn.1672-3678.2012.06.010]
 DENG Tianhua,ZHANG Jing,HUANG Dabin,et al.Semen Nelumbinis polysaccharide structure and antioxidant activity[J].Chinese Journal of Bioprocess Engineering,2012,10(03):47.[doi:10.3969/j.issn.1672-3678.2012.06.010]
[3]窦佩娟,张静,吕青青,等.碱提工艺对茶树菇多糖形貌特征和构象及其生物活性的影响[J].生物加工过程,2013,11(04):22.[doi:10.3969/j.issn.1672-3678.2013.04.005]
 DOU Peijuan,ZHANG Jing,LÜ,et al.Morphology and conformation of polysaccharide from Agrocybe aegerita and its antioxidant activity[J].Chinese Journal of Bioprocess Engineering,2013,11(03):22.[doi:10.3969/j.issn.1672-3678.2013.04.005]
[4]陈睿,孙润广,王小梅,等.猪肚菇多糖WPG1的相对分子质量测定及原子力显微镜观测[J].生物加工过程,2013,11(05):61.[doi:10.3969/j.issn.1672-3678.2013.05.012]
 CHEN Rui,SUN Runguang,WANG Xiaomei,et al.Composition of monosaccharide and AFM analysis of WPG1 from Panus giganteus polysaccharides[J].Chinese Journal of Bioprocess Engineering,2013,11(03):61.[doi:10.3969/j.issn.1672-3678.2013.05.012]
[5]杨成,陈名君,刘辉,等.斜链拟青霉多糖活性组分的分离及其清除自由基活性[J].生物加工过程,2013,11(05):67.[doi:10.3969/j.issn.1672-3678.2013.05.013]
 YANG Cheng,CHEN Mingjun,LIU Hui,et al.Isolating and free radical scavenging active fractions of polysaccharide from Paecilomyces cateniobliquus[J].Chinese Journal of Bioprocess Engineering,2013,11(03):67.[doi:10.3969/j.issn.1672-3678.2013.05.013]
[6]韩乐,孙晓海,韩伟.壳聚糖絮凝法精制合欢皮多糖水提液的工艺[J].生物加工过程,2014,12(02):38.[doi:10.3969/j.issn.1672-3678.2014.02.008]
 HAN Le,SUN Xiaohai,HAN Wei.Flocculating purification process of total polysaccharides from bark of Albizzia julibrissin by using chitosan[J].Chinese Journal of Bioprocess Engineering,2014,12(03):38.[doi:10.3969/j.issn.1672-3678.2014.02.008]
[7]王晓虹,赵晓辉,皮立,等.响应曲面法优化蕨麻多糖的提取工艺[J].生物加工过程,2014,12(05):57.[doi:10.3969/j.issn.1672-3678.2014.05.010]
 WANG Xiaohong,ZHAO Xiaohui,PI Li,et al.Optimization of extraction process of polysaccharides from Potentilla Anserina L. by response surface methodology[J].Chinese Journal of Bioprocess Engineering,2014,12(03):57.[doi:10.3969/j.issn.1672-3678.2014.05.010]
[8]侯宏红,王一峰,赵博,等.中国楤木根皮多糖超声提取工艺及含量测定[J].生物加工过程,2015,13(02):19.[doi:10.3969/j.issn.1672-3678.2015.02.004]
 HOU Honghong,WANG Yifeng,ZHAO Bo,et al.Ultrasonic extraction and determination of polysaccharides from Aralia chinensis L. root[J].Chinese Journal of Bioprocess Engineering,2015,13(03):19.[doi:10.3969/j.issn.1672-3678.2015.02.004]
[9]谷旭晗,刘傲霞,成悦,等.纤维素酶法提取川牛膝多糖[J].生物加工过程,2015,13(06):75.[doi:10.3969/j.issn.1672-3678.2015.06.014]
 GU Xuhan,LIU Aoxia,CHENG Yue,et al.Cellulase-assisted extraction of polysaccharide from Cyathula officinalis Kuan[J].Chinese Journal of Bioprocess Engineering,2015,13(03):75.[doi:10.3969/j.issn.1672-3678.2015.06.014]
[10]邓伟伟,丁重阳,夏海锋,等.灵芝菌丝体液态发酵中生物质组分定量的研究[J].生物加工过程,2017,15(04):15.[doi:10.3969/j.issn.1672-3678.2017.04.003]
 DENG Weiwei,DING Zhongyang,XIA Haifeng,et al.Determination of compounds in mycelium of Ganoderma lucidum in submerged fermentation[J].Chinese Journal of Bioprocess Engineering,2017,15(03):15.[doi:10.3969/j.issn.1672-3678.2017.04.003]

备注/Memo

备注/Memo:
收稿日期:2019-03-14修回日期:2019-04-03
基金项目:国家自然科学基金青年基金(81603290); 江苏省自然科学基金青年基金(BK20170988); 国家重点研发计划(2018YFC1603400)
作者简介:王慧阳(1993—),女,陕西渭南人,硕士研究生,研究方向:生物工程; 吕广萍(联系人),副教授,E-mail:lvguangping@njtech.edu.cn
引文格式:王慧阳,秦靖,庄丹,等.蜗牛黏液多糖的提取、表征及抗氧化性和免疫活性[J].生物加工过程,2020,18(3):324-331.
WANG Huiyang,QIN Jing,ZHUANG Dan,et al.Isolation,characterization,antioxidant and immunomodulating activity of polysaccharides from Achatina fulica mucus[J].Chin J Bioprocess Eng,2020,18(3):324-331..
更新日期/Last Update: 2020-05-30