|本期目录/Table of Contents|

[1]林超霸,李莲,祝佩茹,等.外加电压对污泥厌氧消化产甲烷同步降解菲的影响[J].生物加工过程,2020,18(03):303-311.[doi:10.3969/j.issn.1672-3678.2020.03.006]
 LIN Chaoba,LI Lian,ZHU Peiru,et al.Effects of different voltages on methane production and phenanthrene degradation in sludge anaerobic digestion[J].Chinese Journal of Bioprocess Engineering,2020,18(03):303-311.[doi:10.3969/j.issn.1672-3678.2020.03.006]
点击复制

外加电压对污泥厌氧消化产甲烷同步降解菲的影响()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年03期
页码:
303-311
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Effects of different voltages on methane production and phenanthrene degradation in sludge anaerobic digestion
文章编号:
1672-3678(2020)03-0303-09
作者:
林超霸12李莲3祝佩茹3费吉东12谢欣欣12贾红华12雍晓雨12吴夏芫12周俊12
1.南京工业大学 生物与制药工程学院,江苏 南京 211800; 2.南京工业大学 生物能源所,江苏 南京 211800; 3.南京工业大学 环境学院,江苏 南京 211800
Author(s):
LIN Chaoba12LI Lian3ZHU Peiru3FEI Jidong12XIE Xinxin12JIA Honghua12YONG Xiaoyu12WU Xiayuan12ZHOU Jun12
1.College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China; 2.Bioenergy Research Institute,Nanjing Tech University,Nanjing 211800,China; 3.College of Environment,Nanjing Tech University,Nanjing 211800,China
关键词:
污泥厌氧消化 微生物电解池 微生物多样性 产甲烷菌
分类号:
X705
DOI:
10.3969/j.issn.1672-3678.2020.03.006
文献标志码:
A
摘要:
在污泥厌氧消化与微生物电解池耦合系统中,研究不同外加电压对污泥产甲烷及降解菲的影响,外加电压分别设定为0.4、0.8、1.2和2.5 V,定期对消化过程中产气量、pH、总有机碳(TOC)、溶解性化学需氧量(SCOD)、氨氮及菲含量等参数进行分析,并通过高通量测序对消化污泥及电极生物膜上的微生物多样性进行分析。结果表明:外加电压能有效促进污泥厌氧消化产甲烷并提高系统中菲的降解率,当外加电压为0.8 V时,单位质量固体的甲烷产率为136.36 L/kg,挥发性固体(VS)的去除率为42.26%,污染物菲的去除率为43.88%,均明显高于其他实验组。微生物多样性分析表明:当外加电压低于0.8 V时,阴极生物膜上的优势产甲烷菌为MethanosaetaMethanospirillum,属于乙酸营养性产甲烷菌; 当外加电压为0.8 V以上时,阴极生物膜上的优势产甲烷菌为Methanobacterium,属于氢营养性产甲烷菌。
Abstract:
In a coupled system of sludge anaerobic digestion and microbial electrolysis cell,the effects of different voltages on methane production and phenanthrene degradation were studied.The applied voltages were set to 0.4,0.8,1.2,and 2.5 V.The biogas production,pH,total organic carbon(TOC),soluble chemical oxygen demand(SCOD),ammonia nitrogen,and phenanthrene content were measured during the digestion process,and the microbial diversity on the digestive sludge and electrode biofilm was analyzed by high-throughput sequencing.The results showed that the applied voltage could effectively promote the anaerobic digestion of sludge to produce methane and improve the degradation rate of phenanthrene in the system.When the applied voltage was 0.8 V,the methane yield per solid was 136.36 L/kg.The removal rate of volatile solid(VS)was 42.26%,and the removal rate of pollutant phenanthrene was 43.88%,which was significantly higher than others.Microbial diversity analysis showed that when the applied voltage was lower than 0.8 V,the dominant methanogens on the cathode biofilm were Methanosaeta and Methanospirillum,which belonged to the acetoclastic methanogen. When the applied voltage was above 0.8 V,the dominant methanogen on the cathode biofilm was Methanobacterium,which was hydrogenotrophic methanogen.

参考文献/References:

[1] CHEN H,LIU Y,NI B J,et al.Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area[J].Biochem Eng J,2016,113:114-122.
[2] GONZALEZ A,HENDRIK A T W M,VAN L J B,et al.Pre-treatments to enhance the biodegradability of waste activated sludge:elucidating the rate limiting step[J].Biotechnol Adv,2018,36:1434-1469.
[3] WANG D,ZENG G,CHEN Y,et al.Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge[J].Water Res,2015,73:311-322.
[4] XIE G J,LIU B F,DING J,et al.Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production[J].Water Res,2016,93:56-64.
[5] XU Q,LI X,DING R,et al.Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge[J].Water Res,2017,124:269-279.
[6] WANG D,LIU X,ZENG G,et al.Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge[J].Water Res,2018,130:281-290.
[7] SAYARA T,CVANCAROVA,M,CAJTHAML T,et al.Anaerobic bioremediation of PAH-contaminated soil:assessment of the degradation of contaminants and biogas production under thermophilic and mesophilic conditions[J].Environ Eng Manag J,2015,14(1):153-165.
[8] TRABLY E,PATUREAU D,DELGENES J P.Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge[J].Water Sci Technol,2003,48(4):53-60.
[9] 王晓洁,曾艺芳,张鹏帅,等.外加电压对微生物电解池性能影响研究[J].海峡科学,2017(10):3-5.
[10] DAGHIO M,ESPINOZA TOFALOS A,LEONI B,et al.Bioelectrochemical BTEX removal at different voltages:assessment of the degradation and characterization of the microbial communities[J].J Hazard Mater,2017,341:120-127.
[11] 薄涛,翟洪艳,季民.不锈钢毡电极MEC甲烷原位纯化及原理[J].环境科学学报,2017(11):4057-4063.
[12] CHEN Y,YU B,YIN C,et al.Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge[J].RSC Adv,2016,6:1581-1588.
[13] ZHANG T,GANNON S M,NEVIN K P,et al.Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor[J].Environ Microbiol,2010,12:1011-1020.
[14] LIU Y D,ZHU Y,JIA H H,et al.Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw[J].Bioresour Technol,2017,244:445-451.
[15] YU Q,TIAN Z,LIU J,et al.Biogas production and microbial community dynamics during the anaerobic digestion of rice straw at 39-50℃:apilot study[J].Energy Fuels,2018,32:5157-5163.
[16] CHOI K S,KONDAVEETI S,MIN B.Bioelectrochemical methane(CH4)production in anaerobic digestion at different supplemental voltages[J].Bioresour Technol,2017,245:826-832.
[17] CAI W,LIU W,YANG C,et al.Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge[J].ACS Sustainable Chem Eng,2016,4:4913-4921.
[18] LU L,XING D,REN N,et al.Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J].Water Res,2012,46(7):2425-2434.
[19] YE R,JIN Q,BOHANNAN B,et al.pH controls over anaerobic carbon mineralization,the efficiency of methane production,and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient[J].Soil Biol Biochem,2012,54:36-47.
[20] 胡崇亮,张栋,戴翎翎,等.厌氧消化过程氨抑制研究进展[J].环境工程,2016,34(12):23-27.
[21] NIU Q,QIAO W,QIANG H,et al.Microbial community shifts and biogas conversion computation during steady,inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J].Bioresour Technol,2013,146(10):223-233.
[22] AEMIG Q,CHéRON C,DELGENèS N,et al.Distribution of polycyclic aromatic hydrocarbons(PAHs)in sludge organic matter pools as a driving force of their fate during anaerobic digestion[J].Waste Manag,2016,48:389-396.
[23] KRONENBERG M,TRABLY E,BERNET N,et al.Biodegradation of polycyclic aromatic hydrocarbons:using microbial bioelectrochemical systems to overcome an impasse[J].Environ Pollut,2017,231(1):509-523.
[24] WRIGHTON K C,AGBO P,WARBECK F,et al.A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells[J].ISME J,2008,2(11):1146-1156.
[25] BURNS A S,PUGH C W,SEGID Y T.Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage[J].Biodegradation,2012,23(3):415-429.
[26] WONG M T,ZHANG D,LI J,et al.Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment[J].Biotechnol Biofuels,2013,6(1):38.
[27] PAUL K,NONOH J O,MIKULSKI L,et al."Methanoplasmatales," thermoplasmatales-related archaea in termite guts and other environments,are the seventh order of methanogens[J].Appl Environ Microbiol,2012,78(23):8245-8253.
[28] PARK J,LEE B,TIAN D,et al.Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J].Bioresour Technol,2018,247:226-233.
[29] XAFENIAS N,MAPELLI V.Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production[J].Int J Hydrogen Energy,2014.39(36):21864-21875.
[30] LIANG L,SONG X,KONG J,et al.Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp.JP1[J].Biodegradation,2014,25(6):825-833.
[31] 李想,张雪英,周俊,等.1株铜绿假单胞菌对芘的降解特性及代谢途径[J].环境科学,2018,39(4):1794-1803.
[32] JURELEVICIUS D,ALVAREZ V M,PEXIXOTO R,et al.Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases(PAH-RHD)encoding genes in different soils from King George Bay,Antarctic Peninsula[J].Appl Soil Ecol,2011,48(1):1-9.
[33] HUANG Y,ZHANG J,ZHU L.Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community[J].Bioresour Technol,2013,134:17-23.
[34] TEJERIZO G T,KIM Y S,MAUS I,et al.Genome sequence of Methanobacterium congolense strain Buetzberg,a hydrogenotrophic,methanogenic archaeon,isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste[J].J Biotechnol,2017,247:1-5.

备注/Memo

备注/Memo:
收稿日期:2019-01-08修回日期:2020-03-14
基金项目:国家自然科学基金(21777069); 国家重点研发计划(2016YFE0112800); 江苏省先进生物制造创新中心自主研发课题(XTE1832); 江苏省“青蓝工程”; 江苏省“六大人才”高峰
作者简介:林超霸(1995—),男,湖北汉川人,硕士研究生,研究方向:污泥的资源化利用; 周俊(联系人),副教授,E-mail:zhoujun@njtech.edu.cn
引文格式:林超霸,李莲,祝佩茹,等.外加电压对污泥厌氧消化产甲烷同步降解菲的影响[J].生物加工过程,2020,18(3):303-311.
LIN Chaoba,LI Lian,ZHU Peiru,et al.Effects of different voltages on methane production and phenanthrene degradation in sludge anaerobic digestion[J].Chin J Bioprocess Eng,2020,18(3):303-311..
更新日期/Last Update: 2020-05-30