|本期目录/Table of Contents|

[1]陈雪茹,吴夏芫,陈子璇,等.纳米硫铁的生物合成及其强化电子传递和污染物去除的研究进展[J].生物加工过程,2020,18(03):295-302.[doi:10.3969/j.issn.1672-3678.2020.03.005]
 CHEN Xueru,WU Xiayuan,CHEN Zixuan,et al.Progress in biosynthetic iron sulfide nanoparticles for enhancing electron transfer and pollutant degradation[J].Chinese Journal of Bioprocess Engineering,2020,18(03):295-302.[doi:10.3969/j.issn.1672-3678.2020.03.005]
点击复制

纳米硫铁的生物合成及其强化电子传递和污染物去除的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年03期
页码:
295-302
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Progress in biosynthetic iron sulfide nanoparticles for enhancing electron transfer and pollutant degradation
文章编号:
1672-3678(2020)03-0295-08
作者:
陈雪茹吴夏芫陈子璇崔衍潘正勇白佳莹周俊雍晓雨谢欣欣贾红华韦萍
南京工业大学 生物与制药工程学院 生物能源研究所,江苏 南京 211800
Author(s):
CHEN XueruWU XiayuanCHEN ZixuanCUI YanPAN ZhengyongBAI JiayingZHOU JunYONG XiaoyuXIE XinxinJIA HonghuaWEI Ping
Bioenergy Research Institute,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University,Nanjing 211800,China
关键词:
生物合成 纳米硫铁 电子传递 污染物降解 生物电化学系统
分类号:
Q819
DOI:
10.3969/j.issn.1672-3678.2020.03.005
文献标志码:
A
摘要:
纳米硫铁是一种新型纳米材料,具有良好的导电性、吸附性和还原性,可以强化微生物之间的电子传递,促进污染物降解,近年来已被广泛研究。生物合成法具有污染小、成本低、反应条件温和、纳米硫铁产物性能好等优点。本文中,笔者综述了不同微生物合成纳米硫铁的相关研究进展,总结了其在强化电子传递及污染物去除方面的研究现状,并对生物纳米硫铁应用于生物电化学系统以及污染物去除的前景进行了分析和展望。
Abstract:
Iron sulfide nanoparticles,a new type of nanomaterials with good conductivity,adsorption and reducibility,can enhance electron transfer among microorganisms and promote pollutants degradation,which has been widely studied in recent years.The biosynthesis method has the advantages of low pollution and cost,mild reaction conditions,and excellent performance in synthesizing iron sulfide nanoparticles.This paper reviews the research progress of different microbial synthesis of iron sulfide nanoparticles,and further summarizes current research status on promoting electron transport and pollutants degradation by using biosynthetic iron sulfide nanoparticles.Finally,the application of biosynthetic iron sulfide nanoparticles for bioelectrochemical systems and pollutants degradation is also prospected.

参考文献/References:

[1] MAJI S K,DUTTA A K,BISWAS P,et al.Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic,electrocatalytic and biomimic peroxidase behavior[J].Appl Catal A:Gen,2012(419/420):170-177.
[2] ESMAILI H,KOTOBI A,SHEIBANI S,et al.Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light[J].Int J Miner Metall Mater,2018,25(2):244-252.
[3] WATSON J H P,ELLWOOD D C,DENG Q,et al.Heavy metal adsorption on bacterially produced FeS[J].Miner Eng,1995,8(10):1097-1108.
[4] SUBEDI A,ZHANG L J,SINGH D J,et al.Density functional study of FeS,FeSe,and FeTe:electronic structure,magnetism,phonons,and superconductivity[J].Phys Rev B,2008,78(13):134514.
[5] KIRKEMINDE A,SCOTT R,REN S Q.All inorganic iron pyrite nano-heterojunction solar cells[J].Nanoscale,2012,4(24):7649-7654.
[6] 谢翼飞,李旭东,李福德.生物硫铁纳米材料特性分析及其处理高浓度含铬废水研究[J].环境科学,2009,30(4):1060-1065.
[7] MURPHY C J,GOLE A M,STONE J W,et al.Gold nanoparticles in biology:beyond toxicity to cellular imaging[J].Acc Chen Res,2008,41(12):1721-1730.
[8] LEVARD C,HOTZE E M,LOWRY G V,et al.Environmental transformations of silver nanoparticles:impact on stability and toxicity[J].Environ Sci Technol,2012,46(13):6900-6914.
[9] KALCIENE V,CETKAUSKAITE A.Effects of elemental sulfur and metal sulfides on Vibrio fischeri bacteria[J].Biologija,2006,2:42-46.
[10] BAIKOVA I S,SHTAMM E V,VICHUTINSKAYA E V,et al.The mechanism of oxidation of FeS nanoparticles by molecular oxygen and hydrogen peroxide in dilute aqueous solutions[J].Russ J Phys Chem B,2009,3(2):251-256.
[11] KIM E J,THANH T,KIM J H,et al.Synthesis of metal sulfide-coated iron nanoparticles with enhanced surface reactivity and biocompatibility[J].RSC Adv,2013,3(16):5338-5340.
[12] 李佳,霍丽娟,钱天伟.硫化亚铁纳米粒子吸附地下水中的镉[J].环境工程学报,2016,10(3):1264-1270.
[13] PAT-ESPADAS A M,CERVANTES F J.Microbial recovery of metallic nanoparticles from industrial wastes and their environmental applications[J].J Chem Technol Biotechnol,2018,93(11):3091-3112.
[14] CHO J S,PARK J S,KANG Y C.Porous FeS nanofibers with numerous nanovoids obtained by kirkendall diffusion effect for use as anode materials for sodium-ion batteries[J].Nano Res,2017,10(3):897-907.
[15] LIU X G,WU Y Y,LI X L,et al.FeS@onion-like carbon nanocapsules embedded in amorphous carbon for the lithium ion batteries with excellent cycling stability[J].Ceram Int,2018,44(12):13654-13661.
[16] KIM E J,KIM J H,AZAD A M,et al.Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J].ACS Appl Mater Interfaces,2011,3(5):1457-1462.
[17] HUO Y C,LI W W,CHEN C B,et al.Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32[J].Enzym Microb Technol,2016,95:236-241.
[18] CHIN P P,DING J,YI J B,et al.Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing[J].J Alloy Compd,2005,390(1/2):255-260.
[19] SOORI M,ZAREZADEH K,SHEIBANI S,et al.Mechano-chemical processing and characterization of nano-structured FeS powder[J].Adv Powder Technol,2016,27(2):557-563.
[20] LIU J R,VALSARAJ K T,DEVAI I,et al.Immobilization of aqueous Hg(II)by mackinawite(FeS)[J].J Hazard Mater,2008,157(2/3):432-440.
[21] MIN Y L,CHEN Y C,ZHAO Y G.A small biomolecule-assisted synthesis of iron sulfide nanostructures and magnetic properties[J].Solid State Sci,2009,11(2):451-455.
[22] JIANG X C,HU J S,LIEBER A M,et al.Nanoparticle facilitated extracellular electron transfer in microbial fuel cells[J].Nano Lett,2014,14(11):6737-6742.
[23] KONDO K,OKAMOTO A,HASHIMOTO K,et al.Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J].Langmuir,2015,31(26):7427-7434.
[24] YAMAMOTO M,NAKAMURA R,OGURI K,et al.Generation of electricity and illumination by an environmental fuel cell in deep-sea hydrothermal vents[J].Angew Chem Int Ed,2013,52(41):10758-10761.
[25] ZHOU C,VANNELA R,HAYES K F,et al.Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris[J].J Hazard Mater,2014,272:28-35.
[26] XIAO X,ZHU W W,YUAN H,et al.Biosynthesis of FeS nanoparticles from contaminant degradation in one single system[J].Biochem Eng J,2016,105:214-219.
[27] ZHOU C,ZHOU Y,RITTMANN B E.Reductive precipitation of sulfate and soluble Fe(III)by Desulfovibrio vulgaris:electron donor regulates intracellular electron flow and nano-FeS crystallization[J].Water Res,2017,119:91-101.
[28] KIM Y,LEE Y,ROH Y.Microbial synthesis of iron sulfide(FeS)and iron carbonate(FeCO3)nanoparticles[J].J Nanosci Nanotechnol,2015,15(8):5794-5797.
[29] BHARDE A A,PARIKH R Y,BAIDAKOVA M,et al.Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles[J].Langmuir,2008,24(11):5787-5794.
[30] KATO S,IGARASHI K.Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals[J].MicrobiologyOpen,2019,8(3):e00647.
[31] CHENG S H,LI N,JIANG L,et al.Biodegradation of metal complex naphthol green B and formation of iron-sulfur nanoparticles by marine bacterium Pseudoalteromonas sp.CF10-13[J].Bioresour Technol,2019,273:49-55.
[32] SANDANAMALA J G,ROSE C.Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918[J].J Biotechnol,2014,170:73-78.
[33] SWEENEY R Y,MAO C B,GAO X X,et al.Bacterial biosynthesis of cadmium sulfide nanocrystals[J].Chem Biol,2004,11(11):1553-1559.
[34] 谢翼飞,李旭东,李福德.生物硫铁复合材料处理含铬废水及铬资源化研究[J].中国环境科学,2009,29(12):1260-1265.
[35] LIU X,WANG J,YUE L,et al.Biosynthesis of high-purity γ-MnS nanoparticle by newly isolated Clostridiaceae sp.and its properties characterization[J].Bioproc Biosyst Eng,2015,38(2):219-227.
[36] YAN B Z,WRENN B A,BASAK S,et al.Microbial reduction of Fe(III)in hematite nanoparticles by Geobacter sulfurreducens[J].Environ Sci Technol,2008,42(17):6526-6531.
[37] YU Y Y,CHENG Q W,SHA C,et al.Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI)[J].Chem Eng J,2020,379:122404.
[38] MALARKODI C,RAJESHKUMAR S,PAULKUMAR K,et al.Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens[J].Bioinorg Chem Appl,2014,DOI:10.1155/2014/347167.
[39] RAOUF H M,NASIRI S M.Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles[J].Mater Sci Semicond Process,2015,40:293-301.
[40] ZHOU C,LIU Z L,PATARANUTAPORN P,et al.Biogenic nano-particulate iron-sulfide produced through sulfate and Fe(III)-(hydr)oxide reductions was enhanced by pyruvate as the electron donor[J].RSC Adv,2015,5(122):100750-100761.
[41] BI Y,HYUN S P,KUKKADAPU R K,et al.Oxidative dissolution of UO2in a simulated groundwater containing synthetic nanocrystalline mackinawite[J].Geochim Cosmochim Acta,2013,102:175-190.
[42] WATSON J H P,ELLWOOD D C.Biomagnetic separation and extraction process for heavy metals from solution[J].Miner Eng,1994,7(8):1017-1028.
[43] WATSON J H P,CROUDACE I W,WARWICK P E,et al.Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria[J].Sep Sci Technol,2001,36(12):2571-2607.
[44] MALVANKAR N S,VARGAS M,NEVIN K P,et al.Tunable metallic-like conductivity in microbial nanowire networks[J].Nat Nanotech,2011,6(9):573-579.
[45] MALVANKAR N S,LOVLEY D R.Microbial nanowires for bioenergy applications[J].Curr Opin Biotechnol,2014,27:88-95.
[46] NAKAMURA R,OKAMOTO A,TAJIMA N,et al.Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium[J].Chem Bio Chem,2010,11(5):643-645.
[47] MURUGAN M,MIRAN W,MASUDA T,et al.Biosynthesized iron sulfide nanocluster enhanced anodic current generation by sulfate reducing bacteria in microbial fuel cells[J].Chem Electro Chem,2018,5(24):4015-4020.
[48] LIU J,ZHOU L,DONG F Q,et al.Enhancing as(V)adsorption and passivation using biologically formed nano-sized FeS coatings on limestone:implications for acid mine drainage treatment and neutralization[J].Chemosphere,2017,168:529-538.
[49] BI Y Q,HAYES K F.Nano-FeS inhibits UO2 reoxidation under varied oxic conditions[J].Environ Sci Technol,2014,48(1):632-640.

相似文献/References:

[1]张军华.微生物发酵法生产L赖氨酸的研究进展[J].生物加工过程,2012,10(02):73.[doi:10.3969/j.issn.1672-3678.2012.02.015]
 ZHANG Junhua.Research progress on microbial fermentation of L-lysine[J].Chinese Journal of Bioprocess Engineering,2012,10(03):73.[doi:10.3969/j.issn.1672-3678.2012.02.015]
[2]朱宏阳,陈玮玮,徐虹,等.产ε-聚赖氨酸菌株生物合成条件研究[J].生物加工过程,2005,3(02):15.[doi:10.3969/j.issn.1672-3678.2005.02.003]
 ZHU Hong-yang,CHEN Wei-wei,XU Hong,et al.Identification of a ε-polylysine-producing strain and study of its biosynthetic conditions[J].Chinese Journal of Bioprocess Engineering,2005,3(03):15.[doi:10.3969/j.issn.1672-3678.2005.02.003]
[3]陈远童.生物合成长链二元酸新产业的崛起[J].生物加工过程,2007,5(04):1.[doi:10.3969/j.issn.1672-3678.2007.04.001]
 CHEN Yuan-tong.Rising of a new industry of biosynthesis long chain dicarboxylic acid[J].Chinese Journal of Bioprocess Engineering,2007,5(03):1.[doi:10.3969/j.issn.1672-3678.2007.04.001]

备注/Memo

备注/Memo:
收稿日期:2019-09-30修回日期:2019-11-22
基金项目:国家自然科学基金青年基金(21808108); 江苏省自然科学基金青年基金(BK20180702); 江苏省高等学校自然科学研究面上项目(18KJB610007)
作者简介:陈雪茹(1996—),女,山西临汾人,硕士研究生,研究方向:生物电化学技术; 吴夏芫(联系人),副教授,E-mail:wuxiayuan@njtech.edu.cn
引文格式:陈雪茹,吴夏芫,陈子璇,等.纳米硫铁的生物合成及其强化电子传递和污染物去除的研究进展[J].生物加工过程,2020,18(3):295-302.
CHEN Xueru,WU Xiayuan,CHEN Zixuan,et al.Progress in biosynthetic iron sulfide nanoparticles for enhancing electron transfer and pollutant degradation[J].Chin J Bioprocess Eng,2020,18(3):295-302..
更新日期/Last Update: 2020-05-30