|本期目录/Table of Contents|

 CHEN Tianpeng,ZHU Jiaqing,LIU Dong,et al.Research progress in immobilized fermentation based on quorum sensing[J].Chinese Journal of Bioprocess Engineering,2020,18(02):170-176.[doi:10.3969/j.issn.1672-3678.2020.02.005]





Research progress in immobilized fermentation based on quorum sensing
1.南京工业大学 生物与制药工程学院,江苏 南京 211800; 2.南京工业大学 国家生化工程技术研究中心,江苏 南京 211800; 3.江苏先进生物与化学制造协同创新中心,江苏 南京 211800
CHEN Tianpeng12ZHU Jiaqing12LIU Dong123CHEN Yong123YING Hanjie123
1.College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China; 2.National Engineering Research Center for Biotechnology,Nanjing Tech University,Nanjing 211800,China; 3.Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing Tech University,Nanjing 211800,China
生物膜 固定化 群体感应 信号分子 agr c-di-GMP
在EPS(extracellular polymeric substances)体系中,细胞的自增殖和自修复能力在实现高效连续化生产过程中起着重要作用,细胞显示出集群效应、生命周期得到延长和抗逆性增强等特性。基于此,开发并建立以微生物集群效应形成生物膜的固定化发酵系统并应用于多种化学品的生物制造将具有十分重要的意义。本文中,笔者综述以生物膜为催化剂的固定化发酵研究,解析生物膜形成的调控因子,重点阐述生物膜形成过程中基于信号分子介导的集群效应。目前对生物膜形成过程中基于信号分子介导的集群效应的机制研究尚存在不足,若能从分子和代谢层面探索生物膜中信号介导的细胞集群效应及其对生物催化体系的影响,将为解决固定化发酵中出现的耐受性差和细胞易衰老等问题提供新的途径,对推动工业产品的高效清洁生产具有十分重要的意义。
The abilities of self-proliferation and self-repairing for cells in the EPS(extracellular polymeric substances)system play an important role in achieving efficient and continuous producing process.The population effects,prolonged life cycle and enhanced stress resistance of cells are showed.Based on this,it’s be of great importance for developing and establishing biofilm-based immobilized fermentation strategies which have been applied to various chemicals production.In this paper,we reviewed the study of immobilized fermentation using biofilm as a catalyst.For the moment,the regulatory factors of biofilm formation and the population effects based on signal molecules in the process of biofilm formation is still insufficient.If the explorations could be carried out about it on the level of molecule and metabolism for the stress resistance and life cycle of cells,it will provide a reference for developing more biochemical-producing processes by biocatalysis system.


[1] 伦世仪.生化工程[M].2版.北京:中国轻工业出版社,2008.
[2] LI Z J,CHEN Y,LIU D,et al.Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation[J].Front Microbiol,2015,DOI:10.3389/fmicb.2015.00139.
[3] LIU D,CHEN Y,LI A,et al.Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption[J].Bioresour Technol,2013,129:321-328.
[4] RAMAKRISHNA S,PRAKASHAM R.Microbial fermentations with immobilized cells[J].Curr Sci,1999,77(1):87-100.
[5] TALABARDON M,YANG S T.Production of GFP and glucoamylase by recombinant Aspergillus niger:effects of fermentation conditions on fungal morphology and protein secretion[J].Biotechnol Prog,2005,21(5):1389-1400.
[6] HUI Y S,AMIRUL A,YAHYA A R,et al.Cellulase production by free and immobilized Aspergillus terreus[J].World J Microb Biotechnol,2010,26(1):79.
[7] ABDELLA A,MAZEED T E S,EL-BAZ A F,et al.Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors[J].Process Biochem,2016,51(10):1331-1337.
[8] COSTERTON J W,GEESEY G,CHENG K.How bacteria stick[J].Sci Am,1978,238(1):86-95.
[9] FLEMMING H C,WINGENDER J.The biofilm matrix[J].Nat Rev Microbiol,2010,8(9):623.
[10] SAUER K.The genomics and proteomics of biofilm formation[J].Genom Biol,2003,4(6):219.
[11] UPPULURI P,CHATURVEDI A K,SRINIVASAN A,et al.Dispersion as an important step in the Candida albicans biofilm developmental cycle[J].PLoS Pathog,2010,6(3):e1000828.
[12] 尤业兵,缪冶炼,陈介余,等.海藻酸钙凝胶颗粒固定化抗冻酵母AFY-1的机制分析及条件优化[J].生物加工过程,2016,14(4):5-11.
[13] GIVRY S,PREVOT V,DUCHIRON F.Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology[J].World J Microb Biotechnol,2008,24(6):745-752.
[14] SHEN X L,XIA L M.Lactic acid production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii[J].World J Microb Biotechnol,2006,22(11):1109-1114.
[15] 宋威,张芹,李欢庆,等.复合载体固定化细胞发酵生产核酸酶P1的对比研究[J].河南工业大学学报(自然科学版),2008,29(3):51-54.
[16] 罗虎,刘庆国,陈勇,等.微生物集群效应的固定化酵母生产燃料乙醇[J].生物加工过程,2018,16(3):35-40.
[17] XUE C,LIU F F,XU M M,et al.Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption[J].Bioresour Technol,2016,219:158-168.
[18] XUE C,ZHAO J B,LU C C,et al.High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping[J].Biotechnol Bioeng,2012,109(11):2746-2756.
[19] QURESHI N,BLASCHEK H P.Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation[C] //FINKELSTEIN M,DAVISON B H.Twenty-first symposium on biotechnology for fuels and chemicals.Totowa:Humana Press,2000:225-235.
[20] SHEMESH M,TAM A,STEINBERG D.Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose[J].J Med Microbiol,2007,56(11):1528-1535.
[21] AGARWAL A,JAIN A.Glucose & sodium chloride induced biofilm production & Ica operon in clinical isolates of staphylococci[J].Indian J Med Res,2013,138:262-266.
[22] NAKAGAWA Y,ARAI Y,TODA Y,et al.Glucose repression of FLO11 gene expression regulates pellicle formation by a wild pellicle-forming yeast strain isolated from contaminated wine[J].Biotechnol Biotechnol Equip,2017,31(1):120-127.
[23] MYSZKA K,CZACZYK K.Characterization of adhesive exopolysaccharide(EPS)produced by Pseudomonas aeruginosa under starvation conditions[J].Curr Microbiol,2009,58(6):541-546.
[24] JOHNSON M,COCKAYNE A,WILLIAMS P H,et al.Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves fur-dependent and fur-independent mechanisms[J].J Bacteriol,2005,187(23):8211-8215.
[25] OH E,ANDREWS K J,JEON B.Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni[J].Front Microbiol,2018,9:1204.
[26] 陈一多,张震,姜华,等.真菌中一氧化氮生物合成、降解及功能的研究进展[J].微生物学报,2013,53(1):6-14.
[27] SCHMIDT I,STEENBAKKERS P J,OP DEN CAMP H J,et al.Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers[J].J Bacteriol,2004,186(9):2781-2788.
[28] HENARES B,XU Y M,BOON E.A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation[J].Int J Mol Sci,2013,14(8):16473-16484.
[29] YANG L Y,ZHENG C,CHEN Y,et al.Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1[J].Biotechnol Biofuels,2019,12(1):30.
[30] BARRAUD N,SCHLEHECK D,KLEBENSBERGER J,et al.Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity,decreased cyclic di-GMP levels,and enhanced dispersal[J].J Bacteriol,2009,191(23):7333-7342.
[31] MAH T F C,O’TOOLE G A.Mechanisms of biofilm resistance to antimicrobial agents[J].Trends Microbiol,2001,9(1):34-39.
[32] PRIGENT-COMBARET C,VIDAL O,DOREL C,et al.Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli[J].J Bacteriol,1999,181(19):5993-6002.
[33] PERUMAL P,MEKALA S,CHAFFIN W L.Role for cell density in antifungal drug resistance in Candida albicans biofilms[J].Antimicrob Agents Chemother,2007,51(7):2454-2463.
[34] VERSTREPEN K J,KLIS F M.Flocculation,adhesion and biofilm formation in yeasts[J].Mol Microbiol,2006,60(1):5-15.
[35] BOJSEN R K,ANDERSEN K S,REGENBERG B.Saccharomyces cerevisiae:a model to uncover molecular mechanisms for yeast biofilm biology[J].FEMS Immunol Med Microbiol,2012,65(2):169-182.
[36] RIGDEN D J,MELLO L V,GALPERIN M Y.The PA14 domain,a conserved all-β domain in bacterial toxins,enzymes,adhesins and signaling molecules[J].Trends Biochem Sci,2004,29(7):335-339.
[37] GUO B,STYLES C A,FENG Q H,et al.A Saccharomyces gene family involved in invasive growth,cell-cell adhesion,and mating[J].Proc Natl Acad Sci USA,2000,97(22):12158-12163.
[38] WANG Y,JIANG J B,GAO Y C,et al.Staphylococcus epidermidis small basic protein(Sbp)forms amyloid fibrils,consistent with its function as a scaffolding protein in biofilms[J].J Biol Chem,2018,293(37):14296-14311.
[39] DOUGLAS L M,LI L,YANG Y,et al.Expression and characterization of the flocculin Flo11/Muc1,a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion[J].Eukaryot Cell,2007,6(12):2214-2221.
[40] VUONG C,SAENZ H L,G?TZ F,et al.Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus[J].J Infect Dis,2000,182(6):1688-1693.
[41] BOLES B R,HORSWILL A R.Agr-mediated dispersal of Staphylococcus aureus biofilms[J].PLoS Pathog,2008,4(4):e1000052.
[42] LóPEZ D,VLAMAKIS H,KOLTER R.Biofilms[J].CSH Perspect Biol,2010,2(7):a000398.
[43] ROSS P,WEINHOUSE H,ALONI Y,et al.Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J].Nature,1987,325:279-281.
[44] HENGGE R.Principles of c-di-GMP signalling in bacteria[J].Nat Rev Microbiol,2009,7(4):263-273.
[45] SIMM R,MORR M,KADER A,et al.GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J].Mol Microbiol,2004,53(4):1123-1134.
[46] JENAL U,REINDERS A,LORI C.Cyclic di-GMP:second messenger extraordinaire[J].Nat Rev Microbiol,2017,15(5):271-284.
[47] SONDERMANN H,SHIKUMA N J,YILDIZ F H.You’ve come a long way:c-di-GMP signaling[J].Curr Opin Microbiol,2012,15(2):140-146.
[48] GALPERIN M Y.Bacterial signal transduction network in a genomic perspective[J].Environ Microbiol,2004,6(6):552-567.
[49] GALPERIN M Y,NIKOLSKAYA A N,KOONIN E V.Novel domains of the prokaryotic two-component signal transduction systems[J].FEMS Microbiol Lett,2001,203(1):11-21.
[50] DAHLSTROM K M,O’TOOLE G A.A symphony of cyclases:specificity in diguanylate cyclase signaling[J].Annu Rev Microbiol,2017,71:179-195.
[51] HENGGE R.Cyclic-di-GMP reaches out into the bacterial RNA world[J].Sci Signal,2010,3(149):pe44.
[52] VALENTINI M,FILLOUX A.Biofilms and cyclic di-GMP(c-di-GMP)signaling:lessons from Pseudomonas aeruginosa and other bacteria[J].J Biol Chem,2016,291(24):12547-12555.
[53] IRIE Y,BORLEE B R,O’CONNOR J R,et al.Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa[J].Proc Natl Acad Sci USA,2012,109(50):20632-20636.


[1]喻本青,闫云君,刘 涛,等.海藻酸-SiO2杂化凝胶固定化洋葱伯克霍尔德菌脂肪酶的研究[J].生物加工过程,2010,8(01):16.[doi:doi:10.3969/j.issn.1672-3678.2010.01.004]
 YU Ben-qing,YAN Yun-jun,LIU Tao,et al.Immobilization of lipase from Burkholderia cepacia with alginate-silica hybrid gel[J].Chinese Journal of Bioprocess Engineering,2010,8(02):16.[doi:doi:10.3969/j.issn.1672-3678.2010.01.004]
 YANG Bo,WANG Wei,ZHU Kai,et al.Porcine pancreatic lipase immobilised on nano-silver mesoporous activated carbon composite[J].Chinese Journal of Bioprocess Engineering,2012,10(02):50.[doi:10.3969/j.issn.1672-3678.2012.03.010]
 WU Yang,XUE Yaping,ZHENG Yuguo.Immobilization of recombinant nitrilase on metal chelating carriers[J].Chinese Journal of Bioprocess Engineering,2012,10(02):47.[doi:10.3969/j.issn.1672-3678.2012.04.011]
 WANG Fen,CHEN Feifei,GAO Weifang,et al.Enhancement of thermal stability of immobilized thermolysin using end-group blocking[J].Chinese Journal of Bioprocess Engineering,2013,11(02):47.[doi:10.3969/j.issn.1672-3678.2013.06.010]
 HU Jicheng,WANG Huan,LI Ya,et al.Immobilization of porcine pancreatic lipase on superparamagnetic γ-Fe2O3-attapulgite nanocomposites[J].Chinese Journal of Bioprocess Engineering,2014,12(02):12.[doi:10.3969/j.issn.1672-3678.2014.02.003]
[6]徐晶晶,苏二正,吴向萍,等.Serratia marcescens H30脂肪酶的重组可溶表达、固定化及其酶学性质[J].生物加工过程,2014,12(06):33.[doi:10.3969/j.issn.1672-3678.2014.06.007]
 XU Jingjing,SU Erzheng,WU Xiangping,et al.Recombinant soluble expression,immobilization and characterization of lipase from Serratia marcescens H30[J].Chinese Journal of Bioprocess Engineering,2014,12(02):33.[doi:10.3969/j.issn.1672-3678.2014.06.007]
 FEI Junjie,LI Bingbing,CHEN Yong,et al.Galactooligosaccharides production by β-galactosidase immobilized onto resins[J].Chinese Journal of Bioprocess Engineering,2015,13(02):17.[doi:10.3969/j.issn.1672-3678.2015.04.004]
[8]沙凤,顾金海,许琳,等.交联醇脱氢酶聚集体的制备及其在(R)- 4-氯-3-羟基丁酸乙酯合成中的应用[J].生物加工过程,2015,13(06):24.[doi:10.3969/j.issn.1672-3678.2015.06.005]
 SHA Feng,GU Jinhai,XU Lin,et al.Preparation of alcohol dehydrogenase cross-linked enzyme aggregates and its application to asymmetric synthesis of(R)-4-chloro-3-hydroxybutanoate[J].Chinese Journal of Bioprocess Engineering,2015,13(02):24.[doi:10.3969/j.issn.1672-3678.2015.06.005]
 CHENG Hao,CHEN Yong,YING Hanjie.Preparation of bacterial cellulose membrane with amino group as carrier and its immobilization of β-galactosidase[J].Chinese Journal of Bioprocess Engineering,2015,13(02):36.[doi:10.3969/j.issn.1672-3678.2015.06.007]
 YOU Yebing,MIAO Yelian,CHEN Jieyu,et al.Mechanism analysis and condition optimization for the immobilization of freeze-tolerant yeast AFY-1 within Ca-alginate gel particles[J].Chinese Journal of Bioprocess Engineering,2016,14(02):5.[doi:10.3969/j.issn.1672-3678.2016.04.002]


作者简介:陈天鹏(1992—),男,江苏南通人,博士研究生,研究方向:微生物固定化; 柳东(联系人),副教授,E-mail:liudong@njtech.edu.cn; 陈勇(联系人),研究员,E-mail:chenyong1982@njtech.edu.cn; 应汉杰(联系人),教授,E-mail:yinghanjie@njtech.edu.cn
CHEN Tianpeng,ZHU Jiaqing,LIU Dong,et al.Research progress in immobilized fermentation based on quorum sensing[J].Chin J Bioprocess Eng,2020,18(2):170-176..
更新日期/Last Update: 2020-03-31