|本期目录/Table of Contents|

[1]李清钞,王嵘,曾艳华,等.海洋污损的微生物学过程与机制研究进展[J].生物加工过程,2020,18(02):158-169.[doi:10.3969/j.issn.1672-3678.2020.02.004]
 LI Qingchao,WANG Rong,ZENG Yanhua,et al.Progress in studying microbiological mechanisms in marine fouling[J].Chinese Journal of Bioprocess Engineering,2020,18(02):158-169.[doi:10.3969/j.issn.1672-3678.2020.02.004]
点击复制

海洋污损的微生物学过程与机制研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年02期
页码:
158-169
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Progress in studying microbiological mechanisms in marine fouling
文章编号:
1672-3678(2020)02-0158-12
作者:
李清钞1王嵘2曾艳华1蔡中华1周进1
1.清华大学 深圳国际研究生院,广东 深圳 518055; 2.深圳市蓝海绿洲科技有限公司,广东 深圳 518055
Author(s):
LI Qingchao1WANG Rong2ZENG Yanhua1CAI Zhonghua1ZHOU Jin1
1.Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China; 2.Shenzhen Oasis Marine Technology Co. Ltd.,Shenzhen 518055,China
关键词:
海洋污损 微生物腐蚀 生物淤积 群体感应 防控方法
分类号:
Q939.9【additional_page=213】
DOI:
10.3969/j.issn.1672-3678.2020.02.004
文献标志码:
A
摘要:
海洋生物污损主要由微生物腐蚀(MIC)与生物淤积(MBF)造成。细菌的附着及生物被膜的形成在微观尺度为微生物腐蚀提供了环境条件,而生物淤积则从宏观层面加速了污损的进程。近年来,海洋生物污损在全球范围内造成了巨大的经济损失,各类抗污损的方法也相继开发。微生物行为在污损的形成中扮演着重要角色,包括细菌在基质上的定殖,微生物被膜的产生,微生物结构的组装以及氧化还原性质的改变等。本文中,笔者聚焦海洋污损的微生物学机制,对生物污损的发生条件、影响因素、形成机制、群体感应调节特征进行了总结,并对防控方法进行了归纳,以期从生态学层面深入认识海洋污损的动力学过程,并为开发新型环保型防污材料提供借鉴思路。
Abstract:
Marine biological fouling is caused mainly by microbiologically influenced corrosion(MIC)and marine biofouling(MBF).Microbial adhesion and biofilm formation provide environmental conditions for corrosion at micro-level,and biofouling accelerates the fouling occurrence at macro-level.In recent years,marine corrosion has caused great economic losses in the world,and various antifouling methods have been developed.Microorganism plays an important role in the corrosion,including the colonization of bacteria on the substrate,biofilm’s formation,shift of microbial community and the change of redox properties.This paper focuses on the microbiological mechanism of marine biofouling,including the occurrence conditions,influencing factors,formation mechanism and microbial behavior under quorum sensing regulation.In addition,we also summarized the control methods in order to understand the dynamic process of marine biofouling in depth from the ecological perspective.We hope to provide some new ideas for develop environmentally friendly materials or methods in antifouling-field.

参考文献/References:

[1] CAMPS M,BRIAND J F,GUENTAS-DOMBROWSKY L,et al.Antifouling activity of commercial biocides vs.natural and natural-derived products assessed by marine bacteria adhesion bioassay[J].Mar Pollut Bull,2011,62(5):1032-1040.
[2] DOBRETSOV S,AL-WAHAIBI A S M,LAI D,et al.Inhibition of bacterial fouling by soft coral natural products[J].Int Biodeter Biodegr,2015,98:53-58.
[3] XIE Q Y,PAN J S,MA C F,et al.Dynamic surface antifouling:mechanism and systems[J].Soft Matter,2019,15(6):1087-1107.
[4] SALAMA A J,SATHEESH S,BALQADI A A.Development of biofouling communities on nylon net panels submerged in the central red sea:effects of season and depth[J].Thalassas,2018,34(1):199-208.
[5] DEMIREL Y K,UZUN D,ZHANG Y,et al.Effect of barnacle fouling on ship resistance and powering[J].Biofouling,2017,33(10):819-834.
[6] XUE J H.Asymptotic analysis for buckling of undersea corroded pipelines[J].J Press Vess Technol,2008,130(2):021705.
[7] CUI C J,CHEN A R,PAN Z C,et al.Two-dimensional numerical model and fast estimation method for calculating crevice corrosion of cross-sea bridges[J].Constr Build Mater,2019,206:683-693.
[8] FERRARIO J,CARONNI S,OCCHIPINTI-AMBROGI A,et al.Role of commercial harbours and recreational marinas in the spread of non-indigenous fouling species[J].Biofouling,2017,33(8):651-660.
[9] CASTANEDA H,BENETTON X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J].Corros Sci,2008,50(4):1169-1183.
[10] 林晶.海水中微生物膜下金属材料初期腐蚀行为[D].哈尔滨:哈尔滨工程大学,2006.
[11] JIN J T,WU G X,ZHANG Z H,et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J].Bioresour Technol,2014,165:162-165.
[12] FLEMMING H,SCHAULE G.Microbial deterioration of materials--biofilm und biofouling:countermeasures against biofouling in water systems(German)[J].Werkstoffe Korrosion,1994,45(1):40-53.
[13] BEVERIDGE T.Ultrastructure,chemistry,and function of the bacterial wall[J].Int Rev Cytol,1981,72:229-317.
[14] LOBELLE D,CUNLIFFE M.Early microbial biofilm formation on marine plastic debris[J].Mar Pollut Bull,2011,62(1):197-200.
[15] ROSENHAHN A,SCHILP S,KREUZER H J,et al.The role of "inert" surface chemistry in marine biofouling prevention[J].Phys Chem Chem Phys,2010,12(17):4275-4286.
[16] AN Y H,FRIEDMAN R J.Concise review of mechanisms of bacterial adhesion to biomaterial surfaces[J].J Biomed Mater Res,1998,43(3):338-348.
[17] CHARACKLIS W G,WILDERER P A.Structure and function of biofilms[M].NewYork:John Wiley & Sons,1989.
[18] SILVA S,COSTA E M,HORTA B,et al.Anti-biofilm potential of phenolic acids:the influence of environmental pH and intrinsic physico-chemical properties[J].Biofouling,2016,32(8):853-860.
[19] LACHNIT M,BUHMANN M T,KLEMM J,et al.Identification of proteins in the adhesive trails of the diatom Amphora coffeaeformis[J].Philos T R Soc B,2019,DOI:10.1098/rstb.2019.0196.
[20] HIGGINS M J,MOLINO P,MULVANEY P,et al.The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility 1[J].J Phycol,2003,39(6):1181-1193.
[21] LIND J L,HEIMANN K,MILLER E A,et al.Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans[J].Planta,1997,203(2):213-221.
[22] DANIEL G F,CHAMBERLAIN A H L,JONES E B G.Ultrastructural observations on the marine fouling diatom amphora[J].Helgolander Meeresun,1980,34(2):123-149.
[23] YEBRA D M,KIIL S,DAM-JOHANSEN K.Antifouling technology-past,present and future steps towards efficient and environmentally friendly antifouling coatings[J].Prog Org Coat,2004,50(2):75-104.
[24] LI Y,NING C.Latest research progress of marine microbiological corrosion and bio-fouling,and new approaches of marine anti-corrosion and anti-fouling[J].Bioact Mater,2019,4:189-195.
[25] DANG H Y,LOVELL C R.Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes[J].Appl Environ Microb,2000,66(2):467-475.
[26] JONES P R,COTTRELL M T,KIRCHMAN D L,et al.Bacterial community structure of biofilms on artificial surfaces in an estuary[J].Microb Ecol,2007,53(1):153-162.
[27] LAU S C K,THIYAGARAJAN V,CHEUNG S C K,et al.Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates[J].Aquat Microb Ecol,2005,38(1):41-51.
[28] BROWN N E M,MILAZZO M,RASTRICK S P S,et al.Natural acidification changes the timing and rate of succession,alters community structure,and increases homogeneity in marine biofouling communities[J].Global Change Biol,2018,24(1):e112-e127.
[29] BARAGI L V,ANIL A C.Synergistic effect of elevated temperature,pCO2 and nutrients on marine biofilm[J].Mar Pollut Bull,2016,105(1):102-109.
[30] MOSS J A,NOCKER A,LEPO J E,et al.Stability and change in estuarine biofilm bacterial community diversity[J].Appl Environ Microb,2006,72(9):5679-5688.
[31] DONLAN R M.Biofilms:microbial life on surfaces[J].Emerg Infect Dis,2002,8(9):881-890.
[32] ZARGIEL K A,SWAIN G W.Static vs dynamic settlement and adhesion of diatoms to ship hull coatings[J].Biofouling,2014,30(1):115-129.
[33] MATZ C,WEBB J S,SCHUPP P J,et al.Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense[J].PLoS ONE,2008,3(7):e2744.
[34] HARMSEN M,YANG L A,PAMP S J,et al.An update on Pseudomonas aeruginosa biofilm formation,tolerance,and dispersal[J].FEMS Immunol Med Mic,2010,59(3):253-268.
[35] MCDOUGALD D,RICE S A,BARRAUD N,et al.Should we stay or should we go:mechanisms and ecological consequences for biofilm dispersal[J].Nat Rev Microbiol,2012,10(1):39-50.
[36] CHEN C L,MAKI J S,RITTSCHOF D,et al.Early marine bacterial biofilm on a copper-based antifouling paint[J].Int Biodeter Biodegr,2013,83:71-76.
[37] HOANG H H,GURICH N,GONZáLEZ J E.Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti[J].J Bacteriol,2008,190(3):861-871.
[38] MOHAMED N M,CICIRELLI E M,KAN J J,et al.Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges[J].Environ Microbiol,2008,10(1):75-86.
[39] CUADRADO-SILVA C T,CASTELLANOS L,AREVALO-FERRO C,et al.Detection of quorum sensing systems of bacteria isolated from fouled marine organisms[J].Biochem Syst Ecol,2013,46:101-107.
[40] MA Z,HUANG X,CAI Z,et al.Sociological characteristics of biofilms[J].Scientia Sinica Vitae,2018,48(5):521-534.
[41] WHITELEY M,BANGERA M G,BUMGARNER R E,et al.Gene expression in Pseudomonas aeruginosa biofilms[J].Nature,2001,413:860-864.
[42] TALAGRAND-REBOUL E,JUMAS-BILAK E,LAMY B.The social life of Aeromonas through biofilm and quorum sensing systems[J].Front Microbiol,2017,DOI:10.3389/fmicb.2017.00037.
[43] DAVIES D G,PARSEK M R,PEARSON J P,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm[J].Science,1998,280:295-298.
[44] HAMMER B K,BASSLER B L.Quorum sensing controls biofilm formation in Vibrio cholerae[J].Mol Microbiol,2003,50(1):101-114.
[45] DUNNE W M.Bacterial adhesion:seen any good biofilms lately?[J].Clin Microbiol Rev,2002,15(2):155-166.
[46] HEITHOFF D M,MAHAN M J.Vibrio cholerae biofilms:stuck between a rock and a hard place[J].J Bacteriol,2004,186(15):4835-4837.
[47] ANTUNES J,LEAO P,VASCONCELOS V.Marine biofilms:diversity of communities and of chemical cues[J].Env Microbiol Rep,2019,11(3):287-305.
[48] WHEELER G L,TAIT K,TAYLOR A,et al.Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism[J].Plant Cell Environ,2006,29(4):608-618.
[49] JOINT I,TAIT K,WHEELER G.Cross-kingdom signalling:exploitation of bacterial quorum sensing molecules by the green seaweed Ulva[J].Philos T R Soc B,2007,362(1483):1223-1233.
[50] SINGH R P,BAGHEL R S,REDDY C R K,et al.Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura[J].Front Plant Sci,2015,DOI:10.3389/fpls.2015.00117.
[51] TAIT K,WILLIAMSON H,ATKINSON S,et al.Turnover of quorum sensing signal molecules modulates cross-kingdom signalling[J].Environ Microbiol,2009,11(7):1792-1802.
[52] TWIGG M S,TAIT K,WILLIAMS P,et al.Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria[J].Environ Microbiol,2014,16(2):445-453.
[53] TAIT K,HAVENHAND J.Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement[J].Mol Ecol,2013,22(9):2588-2602.
[54] HUANG S Y,HADFIELD M G.Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans[J].Mar Ecol Progr Ser,2003,260:161-172.
[55] SNEED J M,SHARP K H,RITCHIE K B,et al.The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals[J].P Roy Soc B-Biol Sci,2014,DOI:10.1098/rspb.2013.3086.
[56] HUNG O S,LEE O O,THIYAGARAJAN V,et al.Characterization of cues from natural multi-species biofilms that induce larval attachment of the polychaete Hydroides elegans[J].Aquat Biol,2009,4(3):253-262.
[57] SWANSON R L,WILLIAMSON J E,DE NYS R,et al.Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga[J].Biol Bull,2004,206(3):161-172.
[58] SONDERMANN H,SHIKUMA N J,YILDIZ F H.You’ve come a long way:c-di-GMP signaling[J].Curr Opin Microbiol,2012,15(2):140-146.
[59] ROMLING U,GALPERIN M Y,GOMELSKY M.Cyclic di-GMP:the first 25 years of a universal bacterial second messenger[J].Microbiol Mol Biol R,2013,77(1):1-52.
[60] LIU J,PRINDLE A,HUMPHRIES J,et al.Metabolic co-dependence gives rise to collective oscillations within biofilms[J].Nature,2015,523:550-554.
[61] STEINBERG P D,DE NYS R,KJELLEBERG S.Chemical cues for surface colonization[J].J Chem Ecol,2002,28(10):1935-1951.
[62] TEBBEN J,TAPIOLAS D M,MOTTI C A,et al.Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium[J].PLoS ONE,2011,6(4):e19082.
[63] JOUUCHI T,SATUITO C G,KITAMURA H,et al.Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle,Amphibalanus amphitrite[J].Marine Biology,2007,152(5):1065-1076.
[64] BECKMANN M,HARDER T,QIAN P Y.Induction of larval attachment and metamorphosis in the serpulid polychaete Hydroides elegans by dissolved free amino acids:mode of action in laboratory bioassays[J].Mar Ecol Progr Ser,1999,190:167-178.
[65] JIN T,QIAN P Y.Amino acid exposure modulates the bioactivity of biofilms for larval settlement of Hydroides elegans by altering bacterial community components[J].Mar Ecol Progr Ser,2005,297:169-179.
[66] LAM C,HARDER T,QIAN P Y.Induction of larval settlement in the polychaete Hydroides elegans by extracellular polymers of benthic diatoms[J].Mar Ecol Progr Series,2005,286:145-154.
[67] SWANSON R L,DE NYS R,HUGGETT M J,et al.In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens[J].Mar Ecol Progr Ser,2006,314:1-14.
[68] GANESAN A M,ALFARO A C,HIGGINS C M,et al.Characterization of biofilm exudates and their effects on settlement of mussel(Perna canaliculus)larvae[J].J Exp Mar Biol Ecol,2012,434:34-46.
[69] SZEWZYK U,HOLMSTROM C,WRANGSTADH M,et al.Relevance of the exopolysaccharide of marine Pseudomonas sp.strain S9 for the attachment of ciona-intestinalis larvae[J].Mar Ecol Progr Ser,1991,75(2/3):259-265.
[70] KHANDEPARKER L,ANIL A C,RAGHUKUMAR S.Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite[J].Aquat Microb Ecol,2002,28(1):37-54.
[71] KHANDEPARKER L,ANIL A C,RAGHUKUMAR S.Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite[J].FEMS Microbiol Ecol,2006,58(3):425-438.
[72] PATIL J S,ANIL A C.Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus amphitrite[J].Mar Ecol Progr Ser,2005,301:231-245.
[73] LIU H W,GU T Y,ASIF M,et al.The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J].Corros Sci,2017,114:102-111.
[74] ZHANG P Y,XU D K,LI Y C,et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J].Bioelectrochemistry,2015,101:14-21.
[75] JIA R,UNSAL T,XU D K,et al.Microbiologically influenced corrosion and current mitigation strategies:a state of the art review[J].Int Biodeter Biodegr,2019,137:42-58.
[76] SKOVHUS T L,ECKERT R B,RODRIGUES E.Management and control of microbiologically influenced corrosion(MIC)in the oil and gas industry overview and a North Sea case study[J].J Biotechnol,2017,256:31-45.
[77] XU D,GU T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J].Int Biodeter Biodegr,2014,91:74-81.
[78] LI Y C,XU D K,CHEN C F,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:a review[J].J Mater Sci Technol,2018,34(10):1713-1718.
[79] GU T Y,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].J Mater Sci Technol,2019,35(4):631-636.
[80] LIU H W,FU C Y,GU T Y,et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J].Corros Sci,2015,100:484-495.
[81] CHAMRITSKI I G,BURNS G R,WEBSTER B J,et al.Effect of iron-oxidizing bacteria on pitting of stainless steel[J].Corrosion,2004,60(7):658-669.
[82] INABA Y,XU S,VARDNER J T,et al.Microbially influenced corrosion of stainless steel by Acidithiobacillus ferrooxidans supplemented with pyrite:importance of thiosulfate[J].Appl Environ Microb,2019,85(21):e01381-19.
[83] SCARASCIA G,LEHMANN R,MACHUCA L L,et al.Effect of quorum sensing on the ability of desulfovibrio vulgaris to form biofilms and to biocorrode carbon steel in saline conditions[J].Appl Environ Microb,2019,86(1):e01664-19.
[84] UNSAL T,JIA R,KUMSERANEE S,et al.Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium[J].Eng Fail Anal,2019,100:544-555.
[85] ABED R M,AL FAHDI D,MUTHUKRISHNAN T.Short-term succession of marine microbial fouling communities and the identification of primary and secondary colonizers[J].Biofouling,2019,35(5):526-540.
[86] SELIM M S,SHENASHEN M A,FATTHALLAH N A,et al.In situ fabrication of one-dimensional-based lotus-like silicone/γ-Al2O3 nanocomposites for marine fouling release coatings[J].Chem Select,2017,2(30):9691-9700.
[87] ZECHER K,AITHA V P,HEUER K,et al.A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity[J].J Microbiol Meth,2018,146:104-114.
[88] PERES R S,ARMELIN E,MORENO-MARTINEZ J A,et al.Transport and antifouling properties of papain-based antifouling coatings[J].Appl Surf Sci,2015,341:75-85.
[89] FENG K,LI X,YU L M.Synthesis,antibacterial activity,and application in the antifouling marine coatings of novel acylamino compounds containing gramine groups[J].Prog Org Coat,2018,118:141-147.
[90] SELIM M S,SHENASHEN M A,EL-SAFTY S A,et al.Recent progress in marine foul-release polymeric nanocomposite coatings[J].Prog Mater Sci,2017,87:1-32.
[91] WU W T,ZHAO W J,WU Y H,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Appl Surf Sci,2019,465:279-287.
[92] BELLOTTI N,DEYA C,DEL AMO B,et al.Antifouling paints with zinc “Tannate”[J].Ind Eng Chem Res,2010,49(7):3386-3390.
[93] PEREZ M,BLUSTEIN G,GARCIA M,et al.Cupric tannate:a low copper content antifouling pigment[J].Prog Org Coat,2006,55(4):311-315.
[94] PEREZ M,GARCIA M,BLUSTEIN G,et al.Tannin and tannate from the quebracho tree:an eco-friendly alternative for controlling marine biofouling[J].Biofouling,2007,23(3):151-159.
[95] WU G,JIANG X H,YU L M,et al.Synthesis and quantum chemical calculation of benzamide derivatives containing capsaicin and their bacteriostatic and antifouling properties[J].J Chin Chem Soc,2015,62(10):861-870.
[96] OMAE M.General aspects of tin-free antifouling paints[J].Chem Rev,2003,103(9):3431-3448.
[97] BRESSY C,NGUYEN M N,TANGUY B,et al.Poly(trialkylsilyl methacrylate)s:a family of hydrolysable polymers with tuneable erosion profiles[J].Polym Degrad Stabil,2010,95(7):1260-1268.
[98] DUNDUA A,FRANZKA S,ULBRICHT M.Improved antifouling properties of polydimethylsiloxane films via formation of polysiloxane/polyzwitterion interpenetrating networks[J].Macromol Rapid Comm,2016,37(24):2030-2036.
[99] SOMMER S,EKIN A,WEBSTER D C,et al.A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane)(PDMS)macromers[J].Biofouling,2010,26(8):961-972.
[100] HAWKINS M L,SCHOTT S S,GRIGORYAN B,et al.Anti-protein and anti-bacterial behavior of amphiphilic silicones[J].Polym Chem,2017,8(34):5239-5251.
[101] MARTINELLI E,PRETTI C,OLIVA M,et al.Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus[J].Polymer,2018,145:426-433.
[102] YEH S B,CHEN C S,CHEN W Y,et al.Modification ofsilicone elastomer with zwitterionic silane for durable antifouling properties[J].Langmuir,2014,30(38):11386-11393.
[103] BARTHLOTT W,MAIL M,NEINHUIS C.Superhydrophobic hierarchically structured surfaces in biology:evolution,structural principles and biomimetic applications[J].Philos T R Soc A,2016,DOI:10.1098/rsta.2016.0191.
[104] PENG Y L,LIN C G,WANG L.Thepreliminary study on antifouling mechanism of shark skin[J].Adv Mater Res,2009,79:977-980.
[105] QIN L G,HAFEZI M,YANG H,et al.Constructing adual-function surface by microcasting and nanospraying for efficient drag reduction and potential antifouling capabilities[J].Micromachines,2019,10(7):490.
[106] LI X M,DENG J X,LU Y,et al.Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure[J].Ceram Int,2019,45(17):21759-21767.
  
[107] LIU Y H,LI G J.A new method for producing "Lotus Effect" on a biomimetic shark skin[J].J Colloid Interf Sci,2012,388:235-242.
[108] TENJIMBAYASHI M,NISHIOKA S,KOBAYASHI Y,et al.Alubricant-sandwiched coating with long-term stable anticorrosion performance[J].Langmuir,2018,34(4):1386-1393.
[109] ZHANG F,JU P F,PAN M Q,et al.Self-healing mechanisms in smart protective coatings:a review[J].Corros Sci,2018,144:74-88.
[110] QIAN B T,SHEN Z Q.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir,2005,21(20):9007-9009.
[111] TIAN G Y,ZHANG M,ZHAO Y,et al.High Corrosionprotection performance of a novel nonfluorinated biomimetic superhydrophobic Zn-Fe coating with echinopsis multiplex-like structure[J].ACS Appl Mater Inter,2019,11(41):38205-38217.
[112] DAVEY M E,O’TOOLE G A.Microbial biofilms:from ecology to molecular genetics[J].Microbiol Mol Biol R,2000,64(4):847-867.
[113] RICKARD A H,GILBERT P,HIGH N J,et al.Bacterial coaggregation:an integral process in the development of multi-species biofilms[J].Trends Microbiol,2003,11(2):94-100.
[114] CHAMBERS L D,STOKES K R,WALSH F C,et al.Modern approaches to marine antifouling coatings[J].Surf Coat Tech,2006,201(6):3642-3652.
[115] COLE J R,WANG Q,FISH J A,et al.Ribosomaldatabase project:data and tools for high throughput rRNA analysis[J].Nucleic Acids Res,2014,42(D1):D633-D642.
[116] COTTER P D,ROSS R P,HILL C.Bacteriocins:a viable alternative to antibiotics[J].Nat Rev Microbiol,2013,11(2):95-105.
[117] DUNNE W M.Bacterial adhesion:seen any good biofilms lately[J].Clin Microbiol Rev,2002,15(2):155-166.
[118] RIJAVEC T,ZRIMEC J,VAN SPANNING R,et al.Naturalmicrobial communities can be manipulated by artificially constructed biofilms[J].Adv Sci,2019,DOI:10.1002/advs.201901408.

备注/Memo

备注/Memo:
收稿日期:2020-01-21修回日期:2020-02-10
基金项目:国家自然科学基金(41976126); 深圳市科创委基础研究项目
作者简介:李清钞(1997—),男,湖南湘西人,硕士研究生,研究方向:海洋生态学; 周进(联系人),副教授, E-mail:zhou.jin@sz.tsinghua.edu.cn
引文格式:李清钞,王嵘,曾艳华,等.海洋污损的微生物学过程与机制研究进展[J].生物加工过程,2020,18(2):158-169.
LI Qingchao,WANG Rong,ZENG Yanhua,et al.Progress in studying microbiological mechanisms in marine fouling[J].Chin J Bioprocess Eng,2020,18(2):158-169..
更新日期/Last Update: 2020-03-31