|本期目录/Table of Contents|

[1]陈飞飞,汪东浩,许建和,等.胺脱氢酶催化合成手性胺的机遇与挑战[J].生物加工过程,2020,18(01):70-79.[doi:10.3969/j.issn.1672-3678.2020.01.009]
 CHEN Feifei,WANG Donghao,XU Jianhe,et al.Opportunities and challenges of amine dehydrogenases for chiral amine synthesis[J].Chinese Journal of Bioprocess Engineering,2020,18(01):70-79.[doi:10.3969/j.issn.1672-3678.2020.01.009]
点击复制

胺脱氢酶催化合成手性胺的机遇与挑战()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
70-79
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Opportunities and challenges of amine dehydrogenases for chiral amine synthesis
文章编号:
1672-3678(2020)01-0070-10
作者:
陈飞飞汪东浩许建和郑高伟
华东理工大学 生物反应器工程国家重点实验室,上海 200237
Author(s):
CHEN FeifeiWANG DonghaoXU JianheZHENG Gaowei
State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China
关键词:
生物催化 胺脱氢酶 还原胺化 手性胺 多酶级联反应
分类号:
Q816
DOI:
10.3969/j.issn.1672-3678.2020.01.009
文献标志码:
A
摘要:
光学纯的手性胺是一类重要的手性砌块,广泛应用于药物、天然产物、精细化学品等化合物的合成中。手性胺的酶促合成方法因立体选择性高、反应条件温和、反应过程绿色等优点,引起了学术界与工业界的广泛关注。近年来,一类新颖的胺脱氢酶被报道,其能够利用廉价氨作为氨基供体,催化酮的不对称还原胺化,成为一种有潜力的手性胺合成生物催化剂。在胺脱氢酶的发现、分子改造、底物谱拓展、过程强化、多酶级联构建等方面已取得了显著的进展。本文中,笔者对该类酶取得的研究进展进行总结,并预测其未来的研究趋势和应用中面临的机遇与挑战。

参考文献/References:

[1] GHISLIERI D,TURNER N J.Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines[J].Top Catal,2013,57:284-300.
[2] CONSTABLE D J C,DUNN P J,HAYLER J D,et al.Key green chemistry research areas:a perspective from pharmaceutical manufacturers[J].Green Chem,2007,9:411-420.
[3] SHELDON R A.E factors,green chemistry and catalysis:an odyssey[J].Chem Commun,2008,3352-3365.
[4] BORNSCHEUER U T,HUISMAN G W,KAZLAUSKAS R J,et al.Engineering the third wave of biocatalysis[J].Nature,2012,485:185-194.
[5] ZHENG G W,XU J H.New opportunities for biocatalysis:driving the synthesis of chiral chemicals[J].Curr Opin Biotechnol,2011,22:784-792.
[6] CLOUTHIERZ C M,PELLETIER J N.Expanding the organic toolbox:a guide to integrating biocatalysis in synthesis[J].Chem Soc Rev,2012,41:1585-1605.
[7] JAEGER K E,LIEBETON K,ZONTA A,et al.Biotechnological application of Pseudomonas aeruginosa lipase:efficient kinetic resolution of amines and alcohols[J].Appl Microbiol Biotechnol,1996,46:99-105.
[8] SAVILE C K,JANEY J M,MUNDORFF E C,et al.Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture[J].Science,2010,329:305-309.
[9] KELLY S A,POHLE S,WHARRY S,et al.Application of ω-transaminases in the pharmaceutical industry[J].Chem Rev,2018,118:349-367.
[10] GOMM A,O’REILLY E.Transaminases for chiral amine synthesis[J].Curr Opin Chem Biol,2018,43:106-112.
[11] LI T,LIANG J,AMBROGELLY A,et al.Efficient,chemoenzymatic process for manufacture of the boceprevir bicyclic[3.1.0] proline intermediate based on amine oxidase-catalyzed desymmetrization[J].J Am Chem Soc,2012,134:6467-6472.
[12] GHISLIERI D,GREEN A P,PONTINI M,et al.Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products[J].J Am Chem Soc,2013,135:10863-10869.
[13] LI G,REN J,YAO P,et al.Deracemization of 2-methyl-1,2,3,4-tetrahydroquinoline using mutant cyclohexylamine oxidase obtained by iterative saturation mutagenesis[J].ACS Catal,2014,4:903-908.
[14] HEBERLING M M,WU B,BARTSCHS,JANSSEN D B.Priming ammonia lyases and aminomutases for industrial and therapeutic applications[J].Curr Opin Chem Biol,2013,17:250-260.
[15] LOVELOCK S L,LLOYD R C,TURNER N J.phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway[J].Angew Chem Int Ed,2014,126:4740-4744.
[16] LI H,LUAN Z J,ZHENG G W,et al.Efficient synthesis of chiral indolines using an imine reductase from Paenibacillus lactis[J].Adv Synth Catal,2015,357:1692-1696.
[17] LI H,ZHANG G X,LI L M,et al.A novel(R)-imine reductase from Paenibacillus lactis for asymmetric reduction of 3H-indoles[J].ChemCatChem,2016,8:724-727.
[18] MANGAS-SANCHEZ J,FRANCE S P,MONTGOMERY S L,et al.Imine reductases(IREDs)[J].Curr Opin Chem Biol,2017,37:19-25.
[19] LI H,TIAN P,XU J H,ZHENG G W.Identification of an imine reductase for asymmetric reduction of bulky dihydroisoquinolines[J].Org Lett,2017,19:3151-3154.
[20] ALEKU G A,FRANCE S P,MAN H,et al.A reductive aminase from Aspergillus oryzae[J].Nat Chem,2017,9:961-969.
[21] ABRAHAMSON M J,VAZQUEZ-FIGUEROA E,WOODALL N B,et al.Development of an amine dehydrogenase for synthesis of chiral amines[J].Angew Chem Int Ed,2012,51:3969-3972.
[22] ITOH N,YACHI C,KUDOME T.Determining a novel NAD+-dependent amine dehydrogenase with a broad substrate range from Streptomyces virginiae IFO 12827:purification and characterization[J].J Mol Catal B,2000,10(1/2/3):281-290.
[23] MAYOL O,DAVID S,DARII E,et al.Asymmetric reductive amination by a wild-type amine dehydrogenase from the thermophilic bacteria Petrotoga mobilis[J].Catal Sci Technol,2016,6(20):7421-7428.
[24] ABRAHAMSON M J,WONG J W,BOMMARIUS A S.The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines[J].Adv Synth Catal,2013,355:1780-1786.
[25] BOMMARIUS B R,SCHURMANN M,BOMMARIUS A S.A novel chimeric amine dehydrogenase shows altered substrate specificity compared to its parent enzymes[J].Chem Commun,2014,50:14953-14955.
[26] YE L J,TOH H H,YANG Y,et al.Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase[J].ACS Catal,2015,5:1119-1122.
[27] PUSHPANATH A,SIIROLA E,BORNADEL A,et al.Understanding and overcoming the limitations of Bacillus badius and Caldalkalibacillus thermarum amine dehydrogenases for biocatalytic reductive amination[J].ACS Catal,2017,7:3204-3209.
[28] TSELIOU V,KNAUS T,MASMAN M F,et al.Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-lysine dehydrogenase[J].Nat Commun,2019,10:3717.
[29] CHEN F F,ZHENG G W,LIU L,et al.Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines[J].ACS Catal,2018,8:2622-2628.
[30] MAYOL O,BASTARD K,BELOTI L,et al.A family of native amine dehydrogenases for the asymmetric reductive amination of ketones[J].Nat Catal,2019,2(4):324-333.
[31] CHEN F F,COSGROVE S C,BIRMINGHAM W R,et al.Enantioselective synthesis of chiral vicinal amino alcohols using amine dehydrogenases[J].ACS Catal,2019,9:11813-11818.
[32] AU S K,BOMMARIUS B R,BOMMARIUS A S.Biphasic reaction system allows for conversion of hydrophobic substrates by amine dehydrogenases[J].ACS Catal,2014,4:4021-4026.
[33] LIU J,PANG B Q W,ADAMS J P,et al.Coupled immobilized amine dehydrogenase and glucose dehydrogenase for asymmetric synthesis of amines by reductive amination with cofactor recycling[J].ChemCatChem,2017,9:425-431.
[34] REN H,ZHANG Y H,SU J R,et al.Encapsulation of amine dehydrogenase in hybrid titania nanoparticles by polyethylenimine coating and templated biomineralization[J].J Biotechnol,2017,241:33-41.
[35] BAHN S,IMM S,NEUBERT L,et al.The catalytic amination of alcohols[J].ChemCatChem,2011,3(12):1853-1864.
[36] MUTTI F G,KNAUS T,SCRUTTON N S,et al.Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades[J].Science,2015,349:1525-1529.
[37] CHEN F F,LIU Y Y,ZHENG G W,et al.Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade[J].ChemCatChem,2015,7(23):3838-3841.
[38] WANG J B,REETZ M T.Biocatalysis chiral cascades[J].Nat Chem,2015,7(12):948-949.
[39] THOMPSON M P,TURNER N J.Two-enzyme hydrogen-borrowing amination of alcohols enabled by a cofactor-switched alcohol dehydrogenase[J].ChemCatChem,2017,9(20):3833-3836.
[40] BOHMER W,KNAUS T,MUTTI F G.Hydrogen-borrowing alcohol bioamination with coimmobilized dehydrogenases[J].ChemCatChem,2018,10(4):731-735.
[41] LIU J,LI Z.Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system[J].Biotechnol Bioeng,2019,116(3):536-542.
[42] HOUWMAN J A,KNAUS T,COSTA M,et al.Efficient synthesis of enantiopure amines from alcohols using resting E.coli cells and ammonia[J].Green Chem,2019,21(14):3846-3857.
[43] BOTH P,BUSCH H,KELLY P P,et al.Whole-cell biocatalysts for stereoselective C-H amination reactions[J].Angew Chem Int Ed,2016,55(4):1511-1513.
[44] YU H L,LI T,CHEN F F,et al.Bioamination of alkane with ammonium by an artificially designed multienzyme cascade[J].Metab Eng,2018,47:184-189.
[45] TUFVESSON P,LIMA-RAMOS J,JENSEN J S,et al.Process considerations for the asymmetric synthesis of chiral amines using transaminases[J].Biotechnol Bioeng,2011,108(7):1479-1493.
[46] RICHTER N,FARNBERGER J E,PRESSNITZ D,et al.A system for ω-transaminase mediated(R)-amination using L-alanine as an amine donor[J].Green Chem,2015,17(5):2952-2958.
[47] CHEN F F,ZHANG Y H,ZHANG Z J,et al.An ammonium-formate-driven trienzymatic cascade for ω-transaminase-catalyzed(R)-selective amination[J].J Org Chem,2019,84(22):14987-14993.
[48] YOON S,PATIL M D,SARAK S,et al.Deracemization of racemic amines to enantiopure(R)- and(S)-amines by biocatalytic cascade employing ω-transaminase and amine dehydrogenase[J].ChemCatChem,2019,11(7):1898-1902.
[49] PATIL M D,YOON S,JEON H,et al.Kinetic resolution of racemic amines to enantiopure(S)-amines by a biocatalytic cascade employing amine dehydrogenase and alanine dehydrogenase[J].Catalysts,2019,9(7):600.

相似文献/References:

[1]何玉财,许建和.腈水解酶在羧酸合成中的研究进展[J].生物加工过程,2009,7(01):7.[doi:002]
 HE Yu-cai,XU Jian-he.Nitrilase mediated hydrolysis of nitriles in organic acid synthesis[J].Chinese Journal of Bioprocess Engineering,2009,7(01):7.[doi:002]
[2]张磊,何玉财,仝新利,等.离子液体的性能及应用[J].生物加工过程,2009,7(02):8.
 ZHANG Lei,HE Yu-cai,TONG Xin-li,et al.Properties and application of ionic liquids[J].Chinese Journal of Bioprocess Engineering,2009,7(01):8.
[3]孙广海,周华,朱跃钊,等.双水相生物催化技术的研究进展[J].生物加工过程,2004,2(03):19.[doi:10.3969/j.issn.1672-3678.2004.03.005]
[4]孙志浩.手性技术与生物催化[J].生物加工过程,2004,2(04):6.[doi:10.3969/j.issn.1672-3678.2004.04.002]
[5]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(01):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
[6]杨晟,杨蕴刘,袁中一,等.以技术集成促进生物催化技术转移[J].生物加工过程,2006,4(01):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
 YANG Sheng,YANG Yun-liu,YUAN Zhong-yi,et al.Promotion of biocatalysis technology transfer with technology integration[J].Chinese Journal of Bioprocess Engineering,2006,4(01):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
[7]聂尧,徐岩.生物催化立体选择性氧化还原中存在问题及其发展策略[J].生物加工过程,2008,6(02):1.[doi:10.3969/j.issn.1672-3678.2008.02.001]
 NIE Yao,XU Yan.Biocatalytic systems for stereoselective oxidoreduction: existing limitations and development strategies[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.02.001]
[8]欧阳立明,许建和.生物催化与生物转化研究进展[J].生物加工过程,2008,6(03):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
 OUYANG Li-ming,XU Jian-he.Progress in biocatalysis and biotransformation[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
[9]白云岫,曹逊,戈钧.高分子修饰/无机晶体固定化酶研究进展[J].生物加工过程,2018,16(01):12.[doi:10.3969/j.issn.1672-3678.2018.01.002]
 BAI Yunxiu,CAO Xun,GE Jun.Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites[J].Chinese Journal of Bioprocess Engineering,2018,16(01):12.[doi:10.3969/j.issn.1672-3678.2018.01.002]
[10]王笑,徐铮,李莎,等.一种源于枯草芽孢杆菌的新型甘露糖-6-磷酸异构酶的基因克隆与表达[J].生物加工过程,2018,16(06):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]
 WANG Xiao,XU Zheng,LI Sha,et al.Cloning and expression of a novel mannose-6-phosphate isomerase from Bacillus subtilis[J].Chinese Journal of Bioprocess Engineering,2018,16(01):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]

备注/Memo

备注/Memo:
收稿日期:2019-12-02修回日期:2019-12-27
基金项目:国家自然科学基金(21472045、21878085)
作者简介:陈飞飞(1990—),男,江苏徐州人,博士研究生,研究方向:生物工程; 郑高伟(联系人),教授,E-mail:gaoweizheng@ecust.edu.cn
引用格式:陈飞飞,汪东浩,许建和,等.胺脱氢酶催化合成手性胺的机遇与挑战[J].生物加工过程,2020,18(1):70-79.
CHEN Feifei,WANG Donghao,XU Jianhe,et al.Opportunities and challenges of amine dehydrogenases for chiral amine synthesis[J].Chin J Bioprocess Eng,2020,18(1):70-79..
更新日期/Last Update: 2019-01-30