|本期目录/Table of Contents|

[1]李丽,刘夫锋.淀粉样β蛋白质构象转换及其抑制的分子动力学模拟[J].生物加工过程,2019,17(01):44-52.[doi:10.3969/j.issn.1672-3678.2019.01.007]
 LI Li,LIU Fufeng.Conformational transition of amyloid β-protein and its inhibition explored by molecular dynamics simulation[J].Chinese Journal of Bioprocess Engineering,2019,17(01):44-52.[doi:10.3969/j.issn.1672-3678.2019.01.007]
点击复制

淀粉样β蛋白质构象转换及其抑制的分子动力学模拟()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
17
期数:
2019年01期
页码:
44-52
栏目:
出版日期:
2019-01-30

文章信息/Info

Title:
Conformational transition of amyloid β-protein and its inhibition explored by molecular dynamics simulation
文章编号:
1672-3678(2019)01-0044-09
作者:
李丽1刘夫锋2
1.天津科技大学 海洋与环境学院,天津 300457; 2.天津科技大学 生物工程学院 省部共建食品营养与安全国家重点实验室,天津 300457
Author(s):
LI Li1LIU Fufeng2
1.College of Marine and Environmental Science,Tianjin University of Science & Technology,Tianjin 300457,China; 2.State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology,Tianjin 300457,China
关键词:
淀粉样β蛋白质 构象转换 分子动力学 肽抑制剂 神经退行性疾病
分类号:
O641;Q51
DOI:
10.3969/j.issn.1672-3678.2019.01.007
文献标志码:
A
摘要:
阿尔茨海默病(AD)是多发于老年人的神经退行性疾病。淀粉样β蛋白质(Aβ)的错误折叠和聚集与AD的发生与发展密切相关。以Aβ的错误折叠和聚集为靶标进行AD防治药物研究已成为近年来AD研究领域的热点之一。从初始的α-螺旋结构或无规卷曲构象转换形成富含β-折叠结构是Aβ聚集的关键步骤。本文中,笔者综述利用分子动力学(MD)模拟研究Aβ构象转换的分子机制,介绍MD模拟在小分子和多肽抑制剂抑制Aβ构象转换中的应用。

参考文献/References:

[1] HARDY J A,HIGGINS G A.Alzheimer’s disease:the amyloid cascade hypothesis[J].Science,1992,256:184-185.
[2] HARDY J,SELKOE D J.The amyloid hypothesis of Alzheimer’s disease:progress and problems on the road to therapeutics[J].Science,2002,297:353-356.
[3] SELKOE D J.Alzheimer’s disease:genes,proteins,and therapy[J].Physiol Rev,2001,81(2):741-766.
[4] HAMLEY I W.The amyloid beta peptide:a chemist’s perspective.role in Alzheimer’s and fibrillization[J].Chem Rev,2012,112(10):5147-5192.
[5] SUZUKI N,CHEUNG T T,CAI X D,et al.An increased percentage of long amyloid β protein secreted by familial amyloid beta protein precursor(βAPP717)mutants[J].Science,1994,264:1336-1340.
[6] CARTER J,LIPPA C F.Beta-amyloid,neuronal death and Alzheimer’s disease[J].Curr Mol Med,2001,1(6):733-737.
[7] ASHALL F,GOATE A M.Role of the β-amyloid precursor protein in Alzheimer’s disease[J].Trends Biochem Sci,1994,19(1):42-46.
[8] SISODIA S S,PRICE D L.Role of the β-amyloid protein in Alzheimer’s disease[J].FASEB J,1995,9(5):366-370.
[9] VERDILE G,FULLER S,ATWOOD C S,et al.The role of β amyloid in Alzheimer’s disease:still a cause of everything or the only one who got caught[J].Pharmacol Res,2004,50(4):397-409.
[10] WALSH D M,KLYUBIN I,FADEEVA J V,et al.Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo[J].Nature,2002.416:535-539.
[11] KIRKITADZE M D,CONDRON M MTEPLOW D B.Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis[J].J Mol Biol,2001,312(5):1103-1119.
[12] MCLEAN C A,CHERNY R A,FRASER F W,et al.Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease[J].Ann Neurol,1999,46(6):860-866.
[13] KAYED R,HEAD E,THOMPSON J L,et al.Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis[J].Science,2003,300:486-489.
[14] MATYSIAK S,CLEMENTI C.Mapping folding energy landscapes with theory and experiment[J].Arch Biochem Biophys,2008,469(1):29-33.
[15] CRESCENZI O,TOMASELLI S,GUERRINI R,et al.Solution structure of the Alzheimer amyloid β-peptide(1-42)in an apolar microenvironment:similarity with a virus fusion domain[J].Eur J Biochem,2002,269(22):5642-5648.
[16] SGOURAKIS N G,YAN Y,MCCALLUM S A,et al.The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water:a combined MD/NMR study[J].J Mol Biol,2007,368(5):1448-1457.
[17] HWANG W,ZHANG S,KAMM R D,et al.Kinetic control of dimer structure formation in amyloid fibrillogenesis[J].Proc Natl Acad Sci USA,2004,101(35):12916-12921.
[18] LIU F F,JI L,DONG X Y,et al.Molecular insight into the inhibition effect of trehalose on the nucleation and elongation of amyloid β-peptide oligomers[J].J Phys Chem B,2009,113(32):11320-11329.
[19] MASSI F,PENG J W,LEE J P,et al.Simulation study of the structure and dynamics of the Alzheimer’s amyloid peptide congener in solution[J].Biophys J,2001,80(1):31-44.
[20] TARUS B,STRAUB J ETHIRUMALAI D.Dynamics of Asp23-Lys28 salt-bridge formation in Aβ10-35 monomers[J].J Am Chem Soc,2006,128(50):16159-16168.
[21] REDDY G,STRAUB J ETHIRUMALAI D,.Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Aβ peptides with implications for rates of fibril formation[J].J Phys Chem B,2009,113(4):1162-1172.
[22] MA B,NUSSINOV R.The stability of monomeric intermediates controls amyloid formation:Aβ25-35 and its N27Q mutant[J].Biophys J,2006,90(10):3365-3374.
[23] ZHOU R.Replica exchange molecular dynamics method for protein folding simulation[J].Methods Mol Biol,2007,350:205-223.
[24] CAO Z,LIU L,ZHAO L,et al.Effects of different force fields and temperatures on the structural character of Aβ(12-28)peptide in aqueous solution[J].Int J Mol Sci,2011,12(11):8259-8274.
[25] BAUMKETNER A,SHEA J E.The structure of the Alzheimer amyloid β 10-35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent[J].J Mol Biol,2007,366(1):275-285.
[26] ALVES N A,FRIGORI R B.Structural interconversion in Alzheimer’s amyloid-β(16-35)peptide in an aqueous solution[J].J Phys Chem B,2018,122(6):1869-1875.
[27] NGUYEN P H,TARUS BDERREUMAUX P.Familial Alzheimer A2V mutation reduces the intrinsic disorder and completely changes the free energy landscape of the Aβ 1-28 monomer[J].J Phys Chem B,2014,118(2):501-510.
[28] CHEBARO Y,MOUSSEAU NDERREUMAUX P.Structures and thermodynamics of Alzheimer’s amyloid-β Aβ(16-35)monomer and dimer by replica exchange molecular dynamics simulations:implication for full-length Aβ fibrillation[J].J Phys Chem B,2009,113(21):7668-7675.
[29] WU C,MURRAY M M,BERNSTEIN S L,et al.The structure of Aβ42 C-terminal fragments probed by a combined experimental and theoretical study[J].J Mol Biol,2009,387(2):492-501.
[30] MILLUCCI L,RAGGIASCHI R,FRANCESCHINI D,et al.Rapid aggregation and assembly in aqueous solution of Aβ(25-35)peptide[J].J Biosci,2009,34(2):293-303.
[31] MASSI F,STRAUB J E.Probing the origins of increased activity of the E22Q "Dutch" mutant Alzheimer’s β-amyloid peptide[J].Biophys J,2001,81(2):697-709.
[32] STRAUB J E,GUEVARA J,HUO S,et al.Long time dynamic simulations:exploring the folding pathways of an Alzheimer’s amyloid Aβ-peptide[J].ACC Chem Res,2002,35(6):473-481.
[33] SIMONA F,TIANA G,BROGLIA R A,et al.Modeling the α-helix to β-hairpin transition mechanism and the formation of oligomeric aggregates of the fibrillogenic peptide Aβ(12-28):insights from all-atom molecular dynamics simulations[J].J Mol Graph Model,2004,23(3):263-273.
[34] DAIDONE I,SIMONA F,ROCCATANO D,et al.β-Hairpin conformation of fibrillogenic peptides:structure and α-β transition mechanism revealed by molecular dynamics simulations[J].Proteins,2004,57(1):198-204.
[35] BAUMKETNER A,KRONE M GSHEA J E.Role of the familial Dutch mutation E22Q in the folding and aggregation of the 15-28 fragment of the Alzheimer amyloid-β protein[J].Proc Natl Acad Sci USA,2008,105(16):6027-6032.
[36] BORREGUERO J M,URBANC B,LAZO N D,et al.Folding events in the 21-30 region of amyloid β-protein(Aβ)studied in silico[J].Proc Natl Acad Sci USA,2005,102(17):6015-6020.
[37] BAUMKETNER A,BERNSTEIN S L,WYTTENBACH T,et al.Structure of the 21-30 fragment of amyloid β-protein[J].Protein Sci,2006,15(6):1239-1247.
[38] CRUZ L,URBANC B,BORREGUERO J M,et al.Solvent and mutation effects on the nucleation of amyloid β-protein folding[J].Proc Natl Acad Sci USA,2005,102(51):18258-18263.
[39] XU Y,SHEN J,LUO X,et al.Conformational transition of amyloid β-peptide[J].Proc Natl Acad Sci USA,2005,102(15):5403-5407.
[40] FLOCK D,COLACINO S,COLOMBO G,et al.Misfolding of the amyloid β-protein:a molecular dynamics study[J].Proteins,2006,62(1):183-192.
[41] OLUBIYI O O,STRODEL B.Structures of the amyloid β-peptides Aβ1-40 and Aβ1-42 as influenced by pH and a D-peptide[J].J Phys Chem B,2012,116(10):3280-3291.
[42] WATTS C R,GREGORY A,FRISBIE C,et al.Effects of force fields on the conformational and dynamic properties of amyloid β(1-40)dimer explored by replica exchange molecular dynamics simulations[J].Proteins,2018,86(3):279-300.
[43] YANG M,TEPLOW D B.Amyloid β-protein monomer folding:free-energy surfaces reveal alloform-specific differences[J].J Mol Biol,2008,384(2):450-464.
[44] VIET M H,NGUYEN P H,NGO S T,et al.Effect of the Tottori familial disease mutation(D7N)on the monomers and dimers of Aβ40 and Aβ42[J].ACS Chem Neurosci,2013,4(11):1446-1457.
[45] RHEE Y M,PANDE V S.Multiplexed-replica exchange molecular dynamics method for protein folding simulation[J].Biophys J,2003,84(2):775-786.
[46] SGOURAKIS N G,MERCED-SERRANO M,BOUTSIDIS C,et al.Atomic-level characterization of the ensemble of the Aβ(1-42)monomer in water using unbiased molecular dynamics simulations and spectral algorithms[J].J Mol Biol,2011,405(2):570-583.
[47] ROSENMAN D J,CONNORS C R,CHEN W,et al.Aβ monomers transiently sample oligomer and fibril-like configurations:ensemble characterization using a combined MD/NMR approach[J].J Mol Biol,2013,425(18):3338-3359.
[48] TRIGUERO L,SINGH RPRABHAKAR R.Molecular dynamics study to investigate the effect of chemical substitutions of methionine 35 on the secondary structure of the amyloid β(Aβ(1-42))monomer in aqueous solution[J].J Phys Chem B,2008,112(7):2159-2167.
[49] LIU F F,DONG X Y,SUN Y.Molecular dynamics simulation of the conformational transition of amyloid peptide 42 inhibited by trehalose[J].Acta Phys Chim Sin,2010,26(6):1643-1650.
[50] LIU R,BARKHORDARIAN H,EMADI S,et al.Trehalose differentially inhibits aggregation and neurotoxicity of β-amyloid 40 and 42[J].Neurobiol Dis,2005,20(1):74-81.
[51] LIU F F,DONG X Y,HE L,et al.Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by(-)-epigallocatechin-3-gallate probed by molecular simulations[J].J Phys Chem B,2011,115(41):11879-11887.
[52] XIANG S,LIU F,LIN J,et al.Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments[J].J Agric Food Chem,2017,65(20):4092-4102.
[53] ZHAO J,LIU F,HUANG C,et al.5-Hydroxycyclopenicillone inhibits β-amyloid oligomerization and produces anti-β-amyloid neuroprotective effects in vitro[J].Molecules,2017,22(10):1651.
[54] SHUAIB S,GOYAL B.Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer:insights from molecular dynamics simulations[J].J Biomol Struct Dyn,2018,36(3):663-678.
[55] FUNKE S A,WILLBOLD D.Peptides for therapy and diagnosis of Alzheimer’s disease[J].Curr Pharm Design,2012,18(6):755-767.
[56] YANG C,ZHU X,LI J,et al.Exploration of the mechanism for LPFFD inhibiting the formation of β-sheet conformation of Aβ(1-42)in water[J].J Mol Model,2010,16(4):813-821.
[57] VIET M H,NGO S T,LAM N S,et al.Inhibition of aggregation of amyloid peptides by β-sheet breaker peptides and their binding affinity[J].J Phys Chem B,2011,115(22):7433-7446.
[58] LIU F F,DU W J,SUN Y,et al.Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J].Front Chem Sci Eng,2014,8(4):433-444.
[59] LIU F F,LIU Z,BAI S,et al.Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations[J].J Chem Phys,2012,136(14):145101.
[60] XIONG N,DONG X Y,ZHENG J,et al.Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity[J].ACS Appl Mater Inter,2015,7(10):5650-5662.
[61] LIU F F,FAN Y B,LIU Z,et al.Molecular mechanism underlying affinity interactions between Z(Aβ3)and the Aβ(16-40)monomer[J].Acta Phys Chim Sin,2017,33(9):1905-1914.
[62] WANG Q,LIANG G,ZHANG M,et al.De novo design of self-assembled hexapeptides as β-amyloid(Aβ)peptide inhibitors[J].ACS Chem Neurosci,2014,5(10):972-981.
[63] CARBALLO-PACHECO M,STRODEL B.Comparison of force fields for Alzheimer’s Aβ42:a case study for intrinsically disordered proteins[J].Protein Sci,2017,26(2):174-185.
[64] HUANG J,MACKERELL A D.Force field development and simulations of intrinsically disordered proteins[J].Curr Opin Struct Biol,2018,48:40-48.

备注/Memo

备注/Memo:
收稿日期:2018-09-20修回日期:2018-11-16
基金项目:国家自然科学基金(21576199、21878234); 天津市自然科学基金(18JCZDJC33000); 天津科技大学青年教师创新基金(2016LG17); 天津科技大学大学生实验室创新基金(1705A301)
作者简介:李丽(1981—),女,山东费县人,博士,助理研究员,研究方向:生物过程的分子模拟; 刘夫锋(联系人),教授,E-mail:fufengliu@tust.edu.cn
引文格式:李丽,刘夫锋.淀粉样β蛋白质构象转换及其抑制的分子动力学模拟[J].生物加工过程,2019,17(1):44-52.
LI Li,LIU Fufeng.Conformational transition of amyloid β-protein and its inhibition explored by molecular dynamics simulation[J].Chin J Bioprocess Eng,2019,17(1):44-52..
更新日期/Last Update: 2019-01-30