|本期目录/Table of Contents|

[1]徐婷婷,迟波,毛春,等.功能化多孔聚氨酯薄膜的制备及其生物医学应用[J].生物加工过程,2018,16(05):97-104.[doi:10.3969/j.issn.1672-3678.2018.05.014]
 XU Tingting,CHI Bo,MAO Chun,et al.Preparation and biomedical applications of functional porous polyurethane film[J].Chinese Journal of Bioprocess Engineering,2018,16(05):97-104.[doi:10.3969/j.issn.1672-3678.2018.05.014]
点击复制

功能化多孔聚氨酯薄膜的制备及其生物医学应用()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年05期
页码:
97-104
栏目:
出版日期:
2018-09-29

文章信息/Info

Title:
Preparation and biomedical applications of functional porous polyurethane film
文章编号:
1672-3678(2018)05-0097-08
作者:
徐婷婷12迟波1毛春2徐虹1
1.南京工业大学 食品与轻工学院 材料化学工程国家重点实验室,江苏 南京 211800; 2.南京师范大学 化学与材料科学学院 江苏省生物功能材料重点实验室,江苏 南京 210023
Author(s):
XU Tingting12CHI Bo1MAO Chun2XU Hong1
1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University,Nanjing 211800,China; 2.Jiangsu Key Laboratory of Biofunctional Materials,College of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China
关键词:
多孔聚氨酯薄膜 肝素 血管内皮生长因子(VEGF) 生物相容性 生物材料
分类号:
TQ323.8;R319
DOI:
10.3969/j.issn.1672-3678.2018.05.014
文献标志码:
A
摘要:
聚氨酯(PU)因其具有良好的生物相容性、优异的力学性能、耐磨损及易加工成型等优点,广泛应用于生物医学领域,将其加以修饰改性制备多孔结构聚氨酯,有望成为组织工程支架领域的热门材料。本文中,笔者通过热致相分离法制备多孔PU薄膜,利用肝素对多孔PU薄膜进行改性; 通过血液实验证明肝素改性前后多孔PU薄膜血液相容性差异; 并采用血管内皮生长因子(VEGF)对薄膜进行修饰。傅里叶红外光谱、电子光谱测试和扫描电子显微镜等分析结果表明肝素改性成功。与改性前相比,修饰肝素可以赋予多孔PU薄膜优异的抗粘附特性,有效延长薄膜的体外凝血时间,降低溶血率,避免红细胞形态学异常现象和凝集现象,同时避免补体激活和血小板激活现象。因此,肝素修饰的多孔PU薄膜展示了良好的生物相容性。此外,实验结果表明:VEGF对薄膜进行修饰,可以有效提高生物活性涂层的细胞活性,促进细胞增殖。

参考文献/References:

[1] LIU C,XIA Z,CZEMUSZKA J T.Design and development of three-dimensional scaffolds for tissue engineering[J].Chem Eng Res Des,2007,85(7):1051-1064.
[2] SHOR L,GUCERI S,WEN X J,et al.Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro[J].Biomaterials,2007,28(35):5291-5297.
[3] KIM U J,PARK J,KIM H J,et al.Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin[J].Biomaterials,2005,26(15):2775-2785.
[4] HUANG Y,TANG Z J,LIU Z X,et al.Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte[J].Nano-Micro Lett,2018,10(3):1-8.
[5] XUE J,HE M,LIU H,et al.Drug loaded homogeneous electrospun PCL/gelation hybrid nanofiber structures for anti-infective tissue regeneration membranes[J].Biomaterials,2014,35(34):9395-9405.
[6] GLYNN J J,HINDS M T.Bioactive anti-thrombotic modification of decellularized matrix for vascular applications[J].Adv Healthc Mater,2016,5(12):1439-1446.
[7] LV Q,CAO C,ZHU H.A novel solvent system for blending of polyurethane and heparin[J].Biomaterials,2003,24(22):3915-3919.
[8] CHUNG Y,TAE G,YUK S H,et al.A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors[J].Biomaterials,2006,27(12):2621-2626.
[9] MELLY L,CERINO G,FROBERT A,et al.Myocardial infarction stabilization by cell-based expression of controlled vascular endothelial growth factor levels[J].J Cell Mol Med,2018,22(5):2580-2591.
[10] ROWLAND A S,LIM S A,MARTIN D,et al.Polyurethane/poly(lactic-co-glycolic)acid composite scaffolds fabricated by thermally induced phase separation[J].Biomaterials,2007,28(12):2109-2121.
[11] AKSOY A E,HASIRCI V,HASIRCI N,et al.Surface modification of polyurethanes with covalent immobilization of heparin[J].Macromol Symp,2008,269(1):145-153.
[12] MAO C,LIANG C X,MAO Y Q,et al.Modification of polyethylene with Pluronics F127 for improvement of blood compatibility[J].Colloid Surface B,2009,74(1):362-365.
[13] LI T T,LIU F,LIN H B,et al.Fabrication of anti-fouling,anti-bacterial and non-clotting PVDF membranes through one step “outside-in” interface segregation strategy[J].J Colloid Interf Sci,2018,517:93-103.
[14] LIN W C,LIU T Y,YANG M C.Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate[J].Biomaterials,2004,25(10):1947-1957.
[15] ZHANG J,CHEN X G,LI Y Y,et al.Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin[J].Nanomed Nanotechnol,2007,3(4):258-265.
[16] ASHARANI P V,SETHU S,VADUKUMPULLY S,et al.Investigations on the structural damage in human erythrocytes exposed to silver,gold,and platinum nanoparticles[J].Adv Funct Mater,2010,20(8):1233-1242.
[17] MULLER S,KOEING G,CHARPIOT A,et al.VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings[J].Adv Funct Mater,2008,18(12):1767-1775.
[18] ZHANG J,YUAN J,YUAN Y L,et al.Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions[J].Biomaterials,2003,24(23):4223-4231.
[19] BEST C A,PEPPER V K,OHST D,et al.Designing a tissue-engineered tracheal scaffold for preclinical evaluation[J].Int J Pediatr Otorhinolaryngol,2018,104:155-160.
[20] PACHECO R F,MARQUINA C,VALDIVIA J G,et al.Magnetic nanoparticles for local drug delivery using magnetic implants[J].Methods Mol Biol,2007,311(1):318-322.

备注/Memo

备注/Memo:
收稿日期:2018-04-23修回日期:2018-07-08
基金项目:国家自然科学基金(31771049、31401588); 材料化学工程国家重点实验室开放课题(ZK201606、ZK201403); 江苏省先进生物制造创新中心项目(XTB1804)
作者简介:徐婷婷(1991—),女,江苏南京人,博士研究生,研究方向:生物材料; 毛春(联系人),教授,E-mail:maochun@njnu.edu.cn; 徐虹(联系人),教授,E-mail:xuhong@njtech.edu.cn
引文格式:徐婷婷,迟波,毛春,等.功能化多孔聚氨酯薄膜的制备及其生物医学应用[J].生物加工过程,2018,16(5):97-104.
XU Tingting,CHI Bo,MAO Chun,et al.Preparation and biomedical applications of functional porous polyurethane film[J].Chin J Bioprocess Eng,2018,16(5):97-104..
更新日期/Last Update: 2018-09-30