|本期目录/Table of Contents|

[1]张翠婷,李菁,孙敏捷.配位聚合物在生物医学中的研究进展[J].生物加工过程,2018,16(05):47-53.[doi:10.3969/j.issn.1672-3678.2018.05.007]
 ZHANG Cuiting,LI Jing,SUN Minjie.Coordination polymers in biomedicine[J].Chinese Journal of Bioprocess Engineering,2018,16(05):47-53.[doi:10.3969/j.issn.1672-3678.2018.05.007]
点击复制

配位聚合物在生物医学中的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年05期
页码:
47-53
栏目:
出版日期:
2018-09-29

文章信息/Info

Title:
Coordination polymers in biomedicine
文章编号:
1672-3678(2018)05-0047-07
作者:
张翠婷李菁孙敏捷
中国药科大学 药学院,江苏 南京 210009
Author(s):
ZHANG CuitingLI JingSUN Minjie
School of Pharmacy,China Pharmaceutical University,Nanjing,210009,China
关键词:
配位聚合物 生物医学 诊疗一体化 功能材料 生物成像 药物释放
分类号:
TB347
DOI:
10.3969/j.issn.1672-3678.2018.05.007
文献标志码:
A
摘要:
近年来,配位聚合物作为新型分子功能材料已成为生物医学领域新兴的研究热点。由于其高度的可调性和多功能性,展示出不可估量的应用前景。本文中,笔者对配位聚合物在生物医学中的应用进行了综述,概述了配位聚合物的构造与特点,列举了近年来其在生物医学领域的研究成果和进展,并对其发展前景进行了展望。

参考文献/References:

[1] SARMA B D,RAY K,SIEVERS R E,et al.The stereochemistry of metal chelates with multidentate ligands(II)[J].J Am Chem Soc,1964,86(1):14-16.
[2] KLEIN R M,BAILAR JR J C.Reactions of coordination compounds:polymers from 3-substituted bis-(β-diketone)-beryllium complexes[J].Inorg Chem,1963,2(6):1190-1194.
[3] OEHMKE R W,BAILAR J C.Some coordination compounds of 2-(salicylideneaminomethyl)pyridine[J].J Inorg Nucl Chem,1965,27(10):2209-2215.
[4] BIRADHA K,RAMANAN A,VITTAL J J.Coordination polymers versus metal-organic frameworks[J].Cryst Growth Des,2009,9(7):2969-2970.
[5] BENMANSOUR S,SETIFI F,TRIKI S,et al.Linkage isomerism in coordination polymers[J].Inorg Chem,2012,51(4):2359-2365.
[6] HUO P,CHEN T,HOU J,et al.Ligand-to-ligand charge transfer within metal-organic frameworks based on manganese coordination polymers with tetrathiafulvalene-bicarboxylate and bipyridine ligands[J].Inorg Chem,2016,55(13):6496-6503.
[7] KITAGAWA S,KITAURA R,NORO S.Functional porous coordination polymers[J].Angew Chem Int Ed,2004,43(18):2334-2375.
[8] SCHNOBRICH J K,KOH K,SURA K N,et al.A framework for predicting surface areas in microporous coordination polymers[J].Langmuir,2010,26(8):5808-5814.
[9] KOH K,WONGFOY A G,MATZGER A J.A porous coordination copolymer with over 5000 m2/g BET surface area[J].J Am Chem Soc,2009,131(12):4184-4185.
[10] HALDAR R,MATSUDA R,KITAGAWA S,et al.Amine-responsive adaptable nanospaces:fluorescent porous coordination polymer for molecular recognition[J].Angew Chem Int Ed,2014,53(44):11772-11777.
[11] BAILAR J C."Heterogenizing" homogeneous catalysts[J].Catal Rev Sci Eng,1974,10(1):17-36.
[12] SHINDO H,BROWN T L.Infrared spectra of complexes of L-cysteine and related compounds with zinc(II),cadmium(II),mercury(II),and lead(II)[J].J Am Chem Soc,1965,87(9):1904-1909.
[13] TRAN P D,TRAN T V,ORIO M,et al.Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide[J].Nat Mater,2016,15(6):640-647.
[14] MIRKIN C A,CALABRESE C M,BRILEY W E,et al.Biocompatible infinite coordination polymer nanoparticle-nucleic acid conjugates for antisense gene regulation[J].Angew Chem Int Ed,2014,54(2):476-480.
[15] MARTIGASTALDO C,WARREN J E,STYLIANOU K C,et al.Enhanced stability in rigid peptide-based porous materials[J].Angew Chem Int Ed,2012,51(44):11044-11048.
[16] DONG X,ZHANG M,PEI R,et al.A crystalline copper(II)coordination polymer for the efficient visible-light-driven generation of hydrogen[J].Angew Chem Int Ed,2016,55(6):2073-2077.
[17] TAYLOR-PASHOW K M,DELLA ROCCA J,XIE Z,et al.Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery[J].J Am Chem Soc,2009,131(40):14261-14263.
[18] INUKAI M,HORIKE S,ITAKURA T,et al.Encapsulating mobile proton carriers into structural defects in coordination polymer crystals:high anhydrous proton conduction and fuel cell application[J].J Am Chem Soc,2016,138(27):8505-8511.
[19] DENG J,YU P,WANG Y,et al.Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles[J].Anal Chem,2015,87(5):3080-3086.
[20] NOVIO F,LORENZO J,NADOR F,et al.Carboxyl group(COOH)functionalized coordination polymer nanoparticles as efficient platforms for drug delivery[J].Chem Eur J,2014,20(47):15443-15450.
[21] TAN L L,LI H,ZHOU Y,et al.Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates[J].Small,2015,11(31):3807-3813.
[22] MEEK S T,GREATHOUSE J A,ALLENDORF M D.Metal-organic frameworks:arapidly growing class of versatile nanoporous materials[J].Adv Mater,2011,23(2):249-267.
[23] VALVEKENS P,VANDICHEL M,WAROQUIER M,et al.Metal-dioxidoterephthalate MOFs of the MOF-74 type:microporous basic catalysts with well-defined active sites[J].J Catal,2014,317:1-10.
[24] ZHUANG J,KUO C-H,CHOU L-Y,et al.Optimized metal-organic-framework nanospheres for drug delivery:evaluation of small-molecule encapsulation[J].ACS Nano,2014,8(3):2812-2819.
[25] TEPLENSKY M H,FANTHAM M,LI P,et al.Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release[J].J Am Chem Soc,2017,139(22):7522-7532.
[26] WU M X,YANG Y W.Metal-organic framework(MOF)-based drug/cargo delivery and cancer therapy[J].Adv Mater,2017,DOI:10.1002/adma.201606134.
[27] ZHENG H,ZHANG Y,LIU L,et al.One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J].J Am Chem Soc,2016,138(3):962-968.
[28] RIETER W J,POTT K M,TAYLOR K M,et al.Nanoscale coordination polymers for platinum-based anticancer drug delivery[J].J Am Chem Soc,2008,130(35):11584-11585.
[29] POON C,DUAN X,CHAN C,et al.Nanoscale coordination polymers codeliver carboplatin and gemcitabine for highly effective treatment of platinum-resistant ovarian cancer[J].Mol Pharm,2016,13(11):3665-3675.
[30] ZHANG Z,PROCISSI D,LI W,et al.High resolution MRI for non-invasive mouse lymph node mapping[J].J Immunol Methods,2013,400-4001:23-29.
[31] GUO Y,LEBEL R M,ZHU Y,et al.High-resolution whole-brain DCE-MRI using constrained reconstruction:prospective clinical evaluation in brain tumor patients[J].Med Phys,2016,43(5):2013-2023.
[32] PERRIER M,GALLUD A,AYADI A,et al.Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6] 3-/d-mannitol as T1-weighted MRI contrast agents[J].Nanoscale,2015,7(28):11899-11903.
[33] BOUSQUET J C,SAINI S,STARK D,et al.Gd-DOTA:characterization of a new paramagnetic complex[J].Radiology,1988,166(3):693-698.
[34] KIM J S,RIETER W J,TAYLOR K M,et al.Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging[J].J Am Chem Soc,2007,129(29):8962-8963.
[35] TODD D J,KAY J.Gadolinium-induced fibrosis[J].Annu Rev Med,2016,67(1):273-291.
[36] KANDA T,FUKUSATO T,MATSUDA M,et al.Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction:evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy[J].Radiology,2015,276(1):228-232.
[37] LIU F Y,HE X X,CHEN H D,et al.Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications[J].Nat Commun,2015,Doi:10.1038/ncomms9003.
[38] ZENG J,JING L,HOU Y,et al.Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles:towards high performance MRI contrast agents[J].Adv Mater,2014,26(17):2694-2698.
[39] QIAO H,WANG Y,ZHANG R,et al.MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe3O4 nanoparticles[J].Biomaterials,2017,112:336-345.
[40] TAYLOR K M L,RIETER W J,LIN W.Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging[J].J Am Chem Soc,2008,130(44):14358-14359.
[41] WANG W,JI X,KAPUR A,et al.A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots[J].J Am Chem Soc,2015,137(44):14158-14172.
[42] KHANI O,RAJABI H R,YOUSEFI M H,et al.Synthesis and characterizations of ultra-small ZnS and Zn(1- x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin[J].Spectrochim Acta Part A,2011,79(2):361-369.
[43] SOENEN S J,MONTENEGRO J M,ABDELMONEM A M,et al.The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity:the importance of particle functionality assessment in toxicology[J].Acta Biomater,2014,10(2):732-741.
[44] ZHANG L,QIAN X,LIU L,et al.Water-dispersed quantum dots of coordination polymers with strong photoluminescence[J].Chem Commun,2012,48(49):6166-6168.
[45] KIM D,LEE N,PARK Y I,et al.Recent advances in inorganic nanoparticle-based NIR luminescence imaging:semiconductor nanoparticles and lanthanide nanoparticles[J].Bioconjugate Chem,2016,28(1):115-123.
[46] KANAMORI T,SAWAMURA T,TANAKA T,et al.Coating lanthanide nanoparticles with carbohydrate ligands elicits affinity for HeLa and RAW264.7 cells,enhancing their photodamaging effect[J].Bioorg Med Chem,2017,25(2):743-749.
[47] TEO R D,TERMINI J S,GRAY H B.Lanthanides:applications in cancer diagnosis and therapy[J].J Med Chem,2016,59(13):108-114.
[48] MARCHAL C,FILINCHUK Y,CHEN X Y,et al.Lanthanide-based coordination polymers assembled by a flexible multidentate linker:design,structure,photophysical properties,and dynamic solid-state behavior[J].Chem Eur J,2009,15(21):5273-5288.
[49] HERRERA J M,POPE S J,ADAMS H,et al.Structural and photophysical properties of coordination networks combining[Ru(Bpym)(CN)4] 2-or[{Ru(CN)4} 2(μ-bpym)] 4-anions(bpym= 2,2’-bipyrimidine)with lanthanide(Ⅲ)cations:sensitized near-infrared luminescence from Yb(Ⅲ),Nd(Ⅲ),and Er(Ⅲ)following Ru-to-lanthanide energy transfer[J].Inorg Chem,2006,45(10):3895-3904.
[50] FOUCAULT-COLLET A,GOGICK K A,WHITE K A,et al.Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks[J].Proc Natl Acad Sci USA,2013,110(43):17199-17204.
[51] PAN Y,CHEN W,YANG J,et al.Facile synthesis of gadolinium chelate-conjugated polymer nanoparticles for fluorescence/magnetic resonance dual-modal imaging[J].Anal Chem,2018,90(3):1992-2000.
[52] ZHU J,LU Y,LI Y,et al.Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging[J].Nanoscale,2014,6(1):199-202.
[53] YANG H,QIN C,YU C,et al.RGD-conjugated nanoscale coordination polymers for targeted T1- and T2-weighted magnetic resonance imaging of tumors in vivo[J].Adv Funct Mater,2014,24(12):1738-1747.
[54] NIEDRE M,NTZIACHRISTOS V.Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging[J].Proc IEEE,2008,96(3):382-396.
[55] YU Q,SUN J,ZHU X,et al.Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy[J].J Mater Chem B,2017,5(30):6081-6096.
[56] YANG C,LIN G,ZHU C,et al.Metalla-aromatic loaded magnetic nanoparticles for MRI/photoacoustic imaging-guided cancer phototherapy[J].J Mater Chem B,2018,6(17):2528-2535.
[57] ZHOU Z,LI D,YANG H,et al.Synthesis of d-f coordination polymer nanoparticles and their application in phosphorescence and magnetic resonance imaging[J].Dalton Trans,2011,40(44):11941-11944.
[58] ALRIC C,TALEB J,DUC G L,et al.Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging[J].J Am Chem Soc,2008,130(18):5908-5915.
[59] WANG D,ZHOU J,CHEN R,et al.Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery,magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy[J].Biomaterials,2016,100:27-40.
[60] DUAN X,CHAN C,GUO N,et al.Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor ommunity and antimetastatic effect on breast cancer[J].J Am Chem Soc,2016,138(51):16686-16695.
[61] HUANG Z,HUANG L,HUANG Y,et al.Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy[J].Nanoscale,2017,9(41):15883-15894.
[62] WANG X,TU M,YAN K,et al.Trifunctional polymeric nanocomposites incorporated with Fe3O4/iodine-containing rare earth complex for computed X-ray tomography,magnetic resonance,and optical imaging[J].ACS Appl Mater Interfaces,2015,7(44):24523-24532.
[63] SHEN T,ZHANG Y,KIRILLOV A M,et al.Two-photon sensitized hollow Gd2O3:Eu3+ nanocomposites for real-time dual-mode imaging and monitoring of anticancer drug release[J].Chem Commun,2016,52(7):1447-1450.
[64] HORCAJADA P,CHALATI T,SERRE C,et al.Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J].Nat Mater,2010,9(2):172-178.
[65] LU Y,XUE F,YANG H,et al.Phosphorescent coordination polymer nanoparticles as a three-in-one platform for optical imaging,T1-weighted magnetic resonance imaging,and photodynamic therapy[J].J Phys Chem C,2014,119(1):573-579.

备注/Memo

备注/Memo:
收稿日期:2018-02-05修回日期:2018-06-11
基金项目:国家科技重大专项(2017YFA0205400); 国家自然科学基金(81573377); 江苏省杰出青年基金(BK20170028)
作者简介:张翠婷(1993—),女,内蒙古通辽人,硕士研究生,研究方向:配位聚合物纳米粒; 孙敏捷(联系人),教授,E-mail:msun@cpu.edu.cn
引文格式:张翠婷,李菁,孙敏捷.配位聚合物在生物医学中的研究进展[J].生物加工过程,2018,16(5):47-53.
ZHANG Cuiting,LI Jing,SUN Minjie.Coordination polymers in biomedicine[J].Chin J Bioprocess Eng,2018,16(5):47-53..
更新日期/Last Update: 2018-09-30