|本期目录/Table of Contents|

[1]朱辰奇,钱晨,徐柳,等.细菌衍生物载体在肿瘤治疗中的研究进展[J].生物加工过程,2018,16(05):26-32.[doi:10.3969/j.issn.1672-3678.2018.05.004]
 ZHU Chenqi,QIAN Chen,XU Liu,et al.Research progress of bacteria-derived products vectors in tumor therapy[J].Chinese Journal of Bioprocess Engineering,2018,16(05):26-32.[doi:10.3969/j.issn.1672-3678.2018.05.004]
点击复制

细菌衍生物载体在肿瘤治疗中的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年05期
页码:
26-32
栏目:
出版日期:
2018-09-29

文章信息/Info

Title:
Research progress of bacteria-derived products vectors in tumor therapy
文章编号:
1672-3678(2018)05-0026-07
作者:
朱辰奇12钱晨1徐柳1陈瑞1胡荣峰3陈志鹏1
1.南京中医药大学 药学院,江苏 南京 210023; 2.苏州市立医院本部 药剂科,江苏 苏州 215002; 3.安徽中医药大学 药学院,安徽 合肥 230038
Author(s):
ZHU Chenqi12QIAN Chen1XU Liu1CHEN Rui1HU Rongfeng3CHEN Zhipeng1
1.School of Pharmacy,Nanjing University of Chinese Medicine,Nanjing 210023,China; 2.Department of Pharmacy,Suzhou Municipal Hospital,Suzhou 215002,China; 3.School of Pharmacy,Anhui University of Chinese Medicine,Hefei 230038,China
关键词:
细菌载体 细菌衍生物载体 细菌外膜囊泡 细菌微细胞 细菌原生质体囊泡 肿瘤治疗 肿瘤靶向
分类号:
R73;Q782
DOI:
10.3969/j.issn.1672-3678.2018.05.004
文献标志码:
A
摘要:
细菌载体是当前纳米载药系统研究的热点,其具有粒径小、靶向性能强、可装载化学药物和核酸药物的能力并且易于制备的特点。以活菌作为载体,容易引起生物体免疫反应,存在潜在的安全问题。通过基因工程技术和生物工程技术,可以获得低免疫原性和低毒性的细菌衍生物,并使其具有一定的靶向功能,能够用作载体来递送具有治疗作用的药物至肿瘤靶组织或靶细胞,这引起研究者的广泛关注。本文中,笔者选择3种常见的细菌衍生物——细菌外膜囊泡、细菌原生质体和微细胞这3种细菌衍生物载体在肿瘤治疗中的研究进展进行综述,以期为肿瘤治疗中药物递送系统的构建提供借鉴。

参考文献/References:

[1] KING P D,PERRY M C.Hepatotoxicity of chemotherapy[J].Oncologist,2001,6(2):162-176.
[2] TIAN Y,LI S,SONG J,et al.A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J].Biomaterials,2014,35(7):2383-2390.
[3] DAVIS M E,CHEN Z G,SHIN D M.Nanoparticle therapeutics:an emerging treatment modality for cancer[J].Nat Rev Drug Discovery,2008,7(9):771-782.
[4] DA SILVA C G,RUEDA F,LOWIK C W,et al.Combinatorial prospects of nano-targeted chemoimmunotherapy[J].Biomaterials,2016,83:308-320.
[5] LEI Q,WANG S B,HU J J,et al.Stimuli-responsive "Cluster Bomb" for programmed tumor therapy[J].ACS Nano,2017,11(7):7201-7214.
[6] SHIM G,KIM J Y,HAN J,et al.Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs[J].J Control Release,2014,189:80-89.
[7] YAO H J,ZHANG Y G,SUN L,et al.The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells[J].Biomaterials,2014,35(33):9208-9223.
[8] SUN T M,WANG Y C,WANG F,et al.Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds[J].Biomaterials,2014,35(2):836-845.
[9] PANKHURST Q A,CONNOLLY J,JONES S K,et al.Applications of magnetic nanoparticles in biomedicine[J].J Phys D,2003,36(13):R167-R181.
[10] GONG C Y,SHI S,DONG P W,et al.Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel[J].Int J Pharm,2009,365(1/2):89-99.
[11] WANG H,ZHAO Y,WU Y,et al.Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles[J].Biomaterials,2011,32(32):8281-8290.
[12] YAN W,WANG Y,XIA D,et al.Thermosensitive liposomal codelivery of HAS-paclitaxel and HAS-ellagic acid complexes for enhanced drug perfusion and efficacy against pancreatic cancer[J].ACS Appl Mater Interfaces,2017,9(30):25138-25151.
[13] OBERLI M A,REICHMUTH A M,DORKIN J R,et al.Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy[J].Nano Lett,2017,17(3):1326-1335.
[14] SUN T,ZHANG Y S,PANG B,et al.Engineered nanoparticles for drug delivery in cancer therapy[J].Angew Chem Int Ed,2014,53(46):12320-12364.
[15] GOVINDARAJAN S,SIVAKUMAR J,GARIMIDI P,et al.Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate[J].Biomaterials,2012,33(8):2570-2582.
[16] SINHA R,KIM G J,NIE S,et al.Nanotechnology in cancer therapeutics:bioconjugated nanoparticles for drug delivery[J].Mol Cancer Ther,2006,5(8):1909-1917.
[17] LIU J,LI M,LUO Z,et al.Design of nanocarriers based on complex biological barriers in vivo for tumor therapy[J].Nano Today,2017,15:56-90.
[18] MINGHUANG H.Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin[J].J Control Release,2009,133(2):96-102.
[19] WILHELM S,TAVARES A J,DAI Q,et al.Analysis of nanoparticle delivery to tumours[J].Nat Rev Mater,2016,Doi:10.1038/natrevmats.2016.14.
[20] THEYS J,BARB S,LANDUYT W,et al.Tumor-specific gene delivery using genetically engineered bacteria[J].Curr Gene Ther,2003,3(3):207-221.
[21] WELLS J M,NORTON P M,PAGE R W F L.Progress in the development of mucosal vaccines based on Lactococcus lactis[J].Int Dairy J,1995,5(8):1071-1079.
[22] KRICK E L,SORENMO K U,RANKIN S C,et al.Evaluation of Clostridium novyi-NT spores in dogs with naturally occurring tumors[J].Am J Veter Res,2012,73(1):112-118.
[23] NGUYEN V H,KIM H S,HA J M,et al.Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer[J].Cancer Res,2010,70(1):18-23.
[24] BUTTARO C,FRUEHAUF J H.Engineered E.coli as vehicles for targeted therapeutics[J].Curr Gene Ther,2010,10(1):27-33.
[25] VAN PIJKEREN J P,MORRISSEY D,MONK I R,et al.A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy[J].Human Gene Ther,2010,21(4):405-421.
[26] WELLS J M,MERCENIER A.Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria[J].Nat Rev Microbiol,2008,6(5):349-362.
[27] HOSSEINIDOUST Z,MOSTAGHACI B,YASA O,et al.Bioengineered and biohybrid bacteria-based systems for drug delivery[J].Adv Drug Deliv Rev,2016,106:27-44.
[28] BEVERIDGE T J.Structures of gram-negative cell walls and their derived membrane vesicles[J].J Bacteriol,1999,181(16):4725-4758.
[29] ADLER L W,ROSEN B P.Functional mosaicism of membrane proteins in vesicles of Escherichia coli [J].J Bacteriol,1977,129(2):959-966.
[30] MASHBURN-WARREN L,MCLEAN R J,WHITELEY M.Gram-negative outer membrane vesicles:beyond the cell surface[J].Geobiology,2008,6(3):214-219.
[31] DEATHERAGE B L,COOKSON B T.Membrane vesicle release in bacteria,eukaryotes,and archaea:a conserved yet underappreciated aspect of microbial life[J].Infect Immun,2012,80(6):1948-1957.
[32] KULKARNI H M,JAGANNADHAM M V.Biogenesis and multifaceted roles of outer membrane vesicles fromgram-negative bacteria[J].Microbiology,2014,160(10):2109-2121.
[33] MANNING A J,KUEHN M J.Functional advantages conferred by extracellular prokaryotic membrane vesicles[J].J Mol Microbiol Biotechnol,2013,23(1/2):131-141.
[34] WENSINK J,WITHOLT B.Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein[J].Eur J Biochem,1981,116(2):331-335.
[35] MCBROOM A J,KUEHN M J.Release of outer membrane vesicles bygram-negative bacteria is a novel envelope stress response[J].Mol Microbiol,2007,63(2):545-558.
[36] SCHERTZER J W,WHITELEY M.A bilayer-couple model of bacterial outer membrane vesicle biogenesis[J].mBio,2012,3(2):203-216.
[37] YARON S,KOLLING G L,SIMON L,et al.Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria[J].Appl Environ Microbiol,2000,66(10):4414-4420.
[38] REMIS J P,WEI D,GORUR A,et al.Bacterial social networks:structure and composition of Myxococcus xanthus outer membrane vesicle chains[J].Environ Microbiol,2014,16(2):598-610.
[39] MASHBURN-WARREN L,HOWE J,GARIDEL P,et al.Interaction of quorum signals with outer membrane lipids:insights into prokaryotic membrane vesicle formation[J].Mol Microbiol,2008,69(2):491-502.
[40] KEENAN J,DAY T,NEAL S,et al.A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection[J].FEMS Microbiol Lett,2000,182(2):259-264.
[41] KATO S,KOWASHI YDEMUTH D R.Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin[J].Microb Pathog,2002,32(1):1-13.
[42] HORSTMAN A L,KUEHN M J.Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles[J].J Biol Chem,2000,275(17):12489-12496.
[43] JAIN S,PILLAI J.Bacterial membrane vesicles as novel nanosystems for drug delivery[J].Int J Nanomed,2017,12:6329-6341.
[44] KADURUGAMUWA J L,BEVERIDGE T J.Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens:conceptually new antibiotics[J].J Bacteriol,1996,178(10):2767-2774.
[45] GUJRATI V,KIM S,KIM S H,et al.Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy[J].ACS Nano,2014,8(2):1525-1537.
[46] HYNES N E,LANE H A.ERBB receptors and cancer:the complexity of targeted inhibitors[J].Nat Rev Cancer,2005,5(5):341-354.
[47] BASELGA J,SWAIN S M.Novel anticancer targets:revisiting ERBB2 and discovering ERBB3[J].Nat Rev Cancer,2009,9(7):463-475.
[48] PATEL P L,RANA N K,PATEL M R,et al.Nucleic acid bioconjugates in cancer detection and therapy[J].ChemMedChem,2016,11(3):252-269.
[49] SCHOOLING S R,HUBLEY A,BEVERIDGE T J.Interactions of DNA with biofilm-derived membrane vesicles[J].J Bacteriol,2009,191(13):4097-4102.
[50] RENELLI M,MATIAS V,LO R Y,et al.DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential[J].Microbiology,2004,150(7):2161-2169.
[51] MASHBURN-WARREN L M,WHITELEY M.Special delivery:vesicle trafficking in prokaryotes[J].Mol Microbiol,2010,61(4):839-846.
[52] PéREZ-CRUZ C,CARRIóN O,DELGADO L,et al.New type of outer membrane vesicle produced by the gram-negative bacterium Shewanella vesiculosa M7T:implications for DNA content[J].Appl Environ Microbiol,2013,79(6):1874-1881.
[53] KADURUGAMUWA J L,BEVERIDGE T J.Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin:a novel mechanism of enzyme secretion[J].J Bacteriol,1995,177(14):3998-4008.
[54] KIM O Y,CHOI S J,JANG S C,et al.Bacterial protoplast-derived nanovesicles as vaccine delivery system against bacterial infection[J].Nano Lett,2015,15(1):266-274.
[55] LEDERBERG J.Bacterial protoplasts induced by penicillin[J].Proc Natl Acad Sci USA,1956,42(9):574-577.
[56] JOSELEAU-PETIT D,LI BART J C,AYALA J A,et al.Unstable Escherichia coli L forms revisited:growth requires peptidoglycan synthesis[J].J Bacteriol,2007,189(18):6512-6520.
[57] KIM O Y,CHOI S J,JANG S C,et al.Bacterial protoplast-derived nanovesicles as vaccine delivery system against bacterial infection[J].Nano Lett,2015,15(1):266-274.
[58] MACDIARMID J A,MUGRIDGE N B,WEISS J C,et al.Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics[J].Cancer Cell,2007,11(5):431-445.
[59] OHNO S I,TAKANASHI M,SUDO K,et al.Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells[J].Mol Ther,2013,21(1):185-191.
[60] KIM O Y,DINH N T,PARK H T,et al.Bacterial protoplast-derived nanovesicles for tumor targeted delivery of chemotherapeutics[J].Biomaterials,2017,113:68-79.
[61] MACDIARMID J A,AMARO-MUGRIDGE N B,MADRID-WEISS J,et al.Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug[J].Nat Biotechnol,2009,27(7):643-651.
[62] PARK S Y,LEE J Y,CHANG W S,et al.A coupling process for improving purity of bacterial minicells by holin/lysin[J].J Microbiol Methods,2011,86(1):108-110.
[63] DE JONG W H,BORM P J.Drug delivery and nanoparticles:applications and hazards[J].Int J Nanomed,2008,3(2):133-149.
[64] GIACALONE M J,ZAPATA J C,BERKLEY N L,et al.Immunization with non-replicating E.coli minicells delivering both protein antigen and DNA protects mice from lethal challenge with lymphocytic choriomeningitis virus[J].Vaccine,2007,25(12):2279-2287.
[65] LEE J Y,CHOY H E,LEE J H,et al.Generation of minicells from an endotoxin-free gram-positive strain Corynebacterium glutamicum[J].J Microbiol Biotechnol,2015,25(4):554-558.
[66] SCH RZAMMARETTI P,UBBINK J.The cell wall of lactic acid bacteria:surface constituents and macromolecular conformations[J].Biophys J,2003,85(6):4076-4092.
[67] FLEMMING A.Drug delivery:minicells deliver lethal load to tumours[J].Nat Rev Drug Discovery,2007,6(7):519-519.
[68] SOLOMON B J,JAYESH D,MARK R,et al.A first-time-in-human phase I clinical trial of bispecific antibody-targeted,paclitaxel-packaged bacterial minicells[J].PloS ONE,2015,10(12):e0144559.
[69] MACDIARMID J A,LANGOVA V,BAILEY D,et al.Targeted doxorubicin delivery to brain tumors via minicells:proof of principle using dogs with spontaneously occurring tumors as a model[J].PloS ONE,2016,11(4):e0151832.
[70] VINH D T T,KHUE N T H.Study on minicell generation of Lactobacillus acidophilus VTCC-B-871 for drug delivery[J].J Appl Pharm Sci,2013,3(5):33-36.
[71] NGUYEN T H,DOAN V T.Effects of carbon sources on cell differentiation of Lactobacillus rhamnosus PN04 and applications[J].Biomed Pharmacol J,2015,6(2):197-203.
[72] NGUYEN TH,DOAN V T,HA L D,et al.Molecular cloning,expression of minD gene from Lactobacillus acidophilus VTCC-B-871 and analyses to identify Lactobacillus rhamnosus PN04 from Vietnam Hottuynia cordata Thunb[J].Indian J Microbiol,2013,53(4):385-390.
[73] JIVRAJANI M,NIVSARKAR M.Ligand-targeted bacterial minicells:futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells[J].Nanomedicine,2016,12(8):2485-2498.

备注/Memo

备注/Memo:
收稿日期:2018-01-10修回日期:2018-02-27
基金项目:国家自然科学基金(81773662、8177390); 南京中医药大学药学院杰出人才培养计划Ⅰ类
作者简介:朱辰奇(1991—),男,江苏苏州人,硕士研究生,研究方向:新型递释系统; 陈志鹏(联系人),教授,E-mail:czpcpu2000@hotmail.com
引文格式:朱辰奇,钱晨,徐柳,等.细菌衍生物载体在肿瘤治疗中的研究进展[J].生物加工过程,2018,16(5):26-32.
ZHU Chenqi,QIAN Chen,XU Liu,et al.Research progress of bacteria-derived products vectors in tumor therapy[J].Chin J Bioprocess Eng,2018,16(5):26-32..
更新日期/Last Update: 2018-09-30