|本期目录/Table of Contents|

[1]彭钢,俞亚东,陈晓君,等.基于石墨烯复合材料的电化学传感器在基因检测中的研究进展[J].生物加工过程,2018,16(05):11-19.[doi:10.3969/j.issn.1672-3678.2018.05.002]
 PENG Gang,YU Yadong,CHEN Xiaojun,et al.Research progress in electrochemical gene detection based on graphene composites[J].Chinese Journal of Bioprocess Engineering,2018,16(05):11-19.[doi:10.3969/j.issn.1672-3678.2018.05.002]
点击复制

基于石墨烯复合材料的电化学传感器在基因检测中的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年05期
页码:
11-19
栏目:
出版日期:
2018-09-29

文章信息/Info

Title:
Research progress in electrochemical gene detection based on graphene composites
文章编号:
1672-3678(2018)05-0011-09
作者:
彭钢1俞亚东2陈晓君3黄和4
1.南京工业大学 生物与制药工程学院,江苏 南京 211800; 2.江苏先进生物与化学制造协同创新中心,江苏 南京 210009; 3.南京工业大学 化学与分子工程学院,江苏 南京 211800; 4.南京工业大学 药学院,江苏 南京 211800
Author(s):
PENG Gang1YU Yadong2CHEN Xiaojun3HUANG He4
1.College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211800,China; 2.Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing 210009,China; 3.College of Chemistry and Molecular Engineering,Nanjing Tech University,Nanjing 211800,China; 4.School of Pharmaceutical Sciences,Nanjing Tech University,Nanjing 211800,China
关键词:
石墨烯 复合材料 电化学传感器 基因 检测
分类号:
O657.1
DOI:
10.3969/j.issn.1672-3678.2018.05.002
文献标志码:
A
摘要:
近年来,石墨烯由于其优异的物理化学性能,被广泛应用于电化学传感领域。为了解石墨烯复合材料在基因检测中的应用研究现状,笔者首先介绍了石墨烯组成结构、理化特性和制备方法; 然后,重点综述了基于石墨烯复合材料(石墨烯/无机复合材料、石墨烯/有机复合材料、石墨烯/有机/无机复合材料以及其他石墨烯复合材料)修饰的电化学传感器在基因检测应用中取得的最新进展; 最后,总结了石墨烯复合材料在基因检测研究应用中的优缺点并对其进一步研究提出一些建议。

参考文献/References:

[1] 孟晶岩,安鸣,栗红瑜.简析食品安全检测技术[J].食品工程,2015(1):1-4.
[2] 刘思洁,吴永宁,方赤光.代谢组学技术在食品安全中的应用[J].食品安全质量检测学报,2014,5(4):1081-1086.
[3] 曹际娟,徐君怡,曹冬梅,等.实时荧光聚合酶链式反应检测转基因小麦B73-6-1、B72-8-11b和B102-1-2品系[J].食品科学,2014,35(8):156-159.
[4] 王运照,胡文忠,李婷婷,等.基因芯片在微生物检测中的应用及发展概况[J].食品工业科技,2015,36(15):396-400.
[5] 孙青菊,苑同业,王军,等.液态芯片监测铜绿假单胞菌多重耐药基因的研究[J].热带医学杂志,2016,16(6):732-736.
[6] 邢志芳,吕攀攀,曹国君.基于微流控技术的分子诊断[J].国际检验医学杂志,2017,38(16):2252-2255.
[7] 孟陆丽,程谦讳,张谦益.转基因产品检测方法及应用[J].粮食与油脂,2006(4):10-13.
[8] YANG L,LI X,LI X,et al.[Cu(phen)2] 2+ acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor[J].Anal Biochem,2016,492:56-62.
[9] SHI A,WANG J,HAN X,et al.A sensitive electrochemical DNA biosensor based on gold nanomaterial and graphene amplified signal[J].Sens Actuators B Chem,2014,200(3):206-212.
[10] TEYMOURIAN H,SALIMI A,KHEZRIAN S.Development of a new label-free,indicator-free strategy toward ultrasensitive electrochemical DNA biosensing based on Fe3O4 nanoparticles/reduced graphene oxide composite[J].Electroanalysis,2017,29(2):409-414.
[11] ZAINUDIN N,HAIRUL A R M,YUSOFF M M,et al.Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA[J].Anal Method,2014,6(19):7935-7941.
[12] ZHI L,M LLEN K.A bottom-up approach from molecular nanographenes to unconventional carbon materials[J].J Mater Chem,2008,18(13):1472-1484.
[13] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nat Mater,2007,6(3):183-191.
[14] MEYER J C,GEIM A K,KATSNELSON M,et al.The structure of suspended graphene sheets[J].Nature,2007,446:60-63.
[15] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321:385-388.
[16] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Lett,2008,8(3):902-907.
[17] NOVOSELOV K,GEIM A K,MOROZOV S,et al.Two-dimensional gas of massless dirac fermions in graphene[J].Nature,2005,438:197-200.
[18] NOVOSELOV K S,GEIM A K,MOROZOV S,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
[19] ZHAO W,FANG M,WU F,et al.Preparation of graphene by exfoliation of graphite using wet ball milling[J].J Mater Chem,2010,20(28):5817-5819.
[20] LOTYA M,HERNANDEZ Y,KING P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].J Am Chem Soc,2009,131(10):3611-3620.
[21] DE S,KING P J,LOTYA M,et al.Flexible,transparent,conducting films of randomly stacked graphene from surfactant-stabilized,oxide-free graphene dispersions[J].Small,2010,6(3):458-464.
[22] ENGLERT J M,R HRL J,SCHMIDT C D,et al.Soluble graphene:generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile[J].Adv Mater,2009,21(42):4265-4269.
[23] WILLIAM S,HUMMERS J,OFFEMAN R E.Preparation of graphitic oxide[J].J Am Chem Soc,1958,80(6):1339.
[24] PARK S,RUOFF R S.Chemical methods for the production of graphenes[J].Nat Nanotechnol,2009,4(4):217-224.
[25] DREYER D R,PARK S,BIELAWSKI C W,et al.The chemistry of graphene oxide[J].Chem Soc Rev,2010,39(1):228-240.
[26] BOEHM H,CLAUSS A,FISCHER G,et al.Surface properties of extremely thin graphite lamellae[C] //Proceedings of the fifth conference on carbon.New York:Pergamon Press,1962,1:73-80.
[27] LI Y,TANG L,LI J.Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites[J].Electrochem Commun,2009,11(4):846-849.
[28] LI X,CAI W,AN J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324:1312-1314.
[29] DERVISHI E,LI Z,WATANABE F,et al.Large-scale graphene production by RF-cCVD method[J].Chem Commun,2009,27:4061-4063.
[30] REINA A,JIA X,HO J,et al.Layer area,few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Lett,2008,9(1):30-35.
[31] ZHU M,WANG J,OUTLAW R A,et al.Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition[J].Diamond Relat Mater,2007,16(2):196-201.
[32] MIYATA Y,KAMON K,OHASHI K,et al.A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling[J].Appl Phys Lett,2010,96(26):263105.
[33] LIU C,WANG K,LUO S,et al.Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films[J].Small,2011,7(9):1203-1206.
[34] YANG Y,HAN C,JIANG B,et al.Graphene-based materials with tailored nanostructures for energy conversion and storage[J].Mater Sci Eng R,2016,102:1-72.
[35] CHO M J,PARK H G,JEONG H C,et al.Superior fast switching of liquid crystal devices using graphene quantum dots[J].Liq Cryst,2014,41(6):761-767.
[36] LIN J,CHEN X,HUANG P.Graphene-based nanomaterials for bioimaging[J].Adv Drug Deliver Rev,2016,105:242-254.
[37] WU S,HE Q,TAN C,et al.Graphene-based electrochemical sensors[J].Small,2013,9(8):1160-1172.
[38] CHEN M,HOU C,HUO D,et al.A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles[J].Sens Actuators B Chem,2017,239:421-429.
[39] HAJIHOSSEINI S,NASIRIZADEH N,HEJAZI M S,et al.A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode[J].Mater Sci Eng C,2016,61:506-515.
[40] CHEN M,HOU C,HUO D,et al.An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection[J].Biosens Bioelectron,2016,85:684-691.
[41] WANG J,SHI A,FANG X,et al.An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide[J].Anal Biochem,2015,469:71-75.
[42] JAFARI S,FARIDBOD F,NOROUZI P,et al.Detection of aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on ceria nanoparticles decorated reduced graphene oxide and fast fourier transform square wave voltammetry[J].Anal Chim Acta,2015,895:80-88.
[43] SHUAI H L,HUANG K J,ZHANG W J,et al.Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide-gold nanoparticles hybrids coupling with enzyme signal amplification[J].Sens Actuators B Chem,2017,243:403-411.
[44] SUN W,WANG X,LU Y,et al.Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence[J].Mater Sci Eng C,2015,49:34-39.
[45] SUN W,WANG X,WANG W,et al.Electrochemical DNA sensor for Staphylococcus aureus[J].J Solid State Electrochem,2015,19(8):2431-2438.
[46] GAO N,GAO F,HE S,et al.Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis[J].Anal Chim Acta,2017,951:58-67.
[47] MOUSAVISANI S Z,RAOOF J B,OJANI R,et al.Rapid detection of single nucleotide mutation in p53 gene based on gold nanoparticles decorated on graphene nanosheets[J].J Chem Sci,2017,129(1):131-139.
[48] RASHEED P A,RADHAKRISHNAN T,SHIHABUDEEN P,et al.Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor[J].Biosens Bioelectron,2016,83:361-367.
[49] HUANG K J,LIU Y J,WANG H B,et al.Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles[J].Sens Actuators B Chem,2014,191:828-836.
[50] ZHANG Z,LUO L,CHEN G,et al.Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing[J].Biosens Bioelectron,2014,60:161-166.
[51] LI B,LI Z,SITU B,et al.Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode[J].Biosens Bioelectron,2014,52:330-336.
[52] TRAN H,PIRO B,REISBERG S,et al.An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes[J].Biosens Bioelectron,2014,62:25-30.
[53] ZHENG Q,WU H,SHEN Z,et al.An electrochemical DNA sensor based on polyaniline/graphene:high sensitivity to DNA sequences in a wide range[J].Analyst,2015,140(19):6660-6670.
[54] BENVIDI A,TEZERJANI M D,JAHANBANI S,et al.Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs[J].Talanta,2016,147:621-627.
[55] ESTEBAN-FERN? ND?B,ARAQUE E,CAMPUZANO S,et al.Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples[J].Anal Chem,2015,87(4):2290-2298.
[56] YOLA M L,EREN T,ATAR N.A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide[J].Electrochim Acta,2014,125:38-47.
[57] HUANG H,BAI W,DONG C,et al.An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection[J].Biosens Bioelectron,2015,68:442-446.
[58] LIU L,JIANG S,WANG L,et al.Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan,graphene sheets,and a poly(amidoamine)dendrimer composite with gold and silver nanoclusters[J].Microchim Acta,2015,182(1/2):77-84.
[59] FANG L X,CAO J T,HUANG K J.A sensitive electrochemical biosensor for specific DNA sequence detection based on flower-like VS 2,graphene and Au nanoparticles signal amplification[J].J Electroanal Chem,2015,746:1-8.
[60] ZHANG W,HU Q,SU Y,et al.Biocompatible nanostructured poly(xanthurenic acid)-Fe2O3/reduced graphene oxide platform for genosensing application[J].J Electroanal Chem,2014,719:72-76.
[61] CHEN X,WANG L,SHENG S,et al.Coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites for the detection of BCR/ABL fusion gene[J].Anal Chim Acta,2015,889:90-97.
[62] TIWARI I,SINGH M,PANDEY C M,et al.Electrochemical detection of a pathogenic Escherichia coli specific DNA sequence based on a graphene oxide-chitosan composite decorated with nickel ferrite nanoparticles[J].RSC Adv,2015,5(82):67115-67124.
[63] WANG S,LIU Q,LI H,et al.Fabrication of label-free electrochemical impedimetric DNA biosensor for detection of genetically modified soybean by recognizing CaMV 35S promoter[J].J Electroanal Chem,2016,782:19-25.
[64] WANG L,HUA E,LIANG M,et al.Graphene sheets,polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe[J].Biosens Bioelectron,2014,51:201-207.
[65] LOW S S,LOH H-S,BOEY J S,et al.Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection[J].Biosens Bioelectron,2017,94:365-373.
[66] YE Y,GAO J,ZHUANG H,et al.Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA[J].Microchim Acta,2017,184(1):245-252.
[67] HU T,ZHANG L,WEN W,et al.Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor[J].Biosens Bioelectron,2016,77:451-456.

相似文献/References:

[1]赵睿,廖红,武秀蓉,等.金属有机骨架材料在样品前处理领域的研究进展[J].生物加工过程,2017,15(06):55.[doi:10.3969/j.issn.1672-3678.2017.06.008]
 ZHAO Rui,LIAO Hong,WU Xiurong,et al.Applications of metal-organic frameworks in sample pretreatment[J].Chinese Journal of Bioprocess Engineering,2017,15(05):55.[doi:10.3969/j.issn.1672-3678.2017.06.008]

备注/Memo

备注/Memo:
收稿日期:2017-06-20修回日期:2017-08-29
基金项目:国家自然科学基金(21225626、21506096、21476111、21406112、21575064); 国家高技术研究发展计划(863计划)(2013AA020302、2014AA021703); 江苏省自然科学基金(BK20151535); 江苏省六大人才高峰(2016-SWYY-022); 农业部农产品加工重点实验室开放课题(2015011)
作者简介:彭钢(1989—),男,安徽池州人,博士研究生,研究方向:电化学生物传感; 陈晓君(联系人),教授,E-mail:chenxj@njtech.edu.cn; 黄和(联系人),教授,E-mail:biotech@njtech.edu.cn
引文格式:彭钢,俞亚东,陈晓君,等.基于石墨烯复合材料的电化学传感器在基因检测中的研究进展[J].生物加工过程,2018,16(5):11-19.
PENG Gang,YU Yadong,CHEN Xiaojun,et al.Research progress in electrochemical gene detection based on graphene composites[J].Chin J Bioprocess Eng,2018,16(5):11-19..
更新日期/Last Update: 2018-09-30