|本期目录/Table of Contents|

[1]白云岫,曹逊,戈钧.高分子修饰/无机晶体固定化酶研究进展[J].生物加工过程,2018,16(01):12-18.[doi:10.3969/j.issn.1672-3678.2018.01.002]
 BAI Yunxiu,CAO Xun,GE Jun.Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites[J].Chinese Journal of Bioprocess Engineering,2018,16(01):12-18.[doi:10.3969/j.issn.1672-3678.2018.01.002]
点击复制

高分子修饰/无机晶体固定化酶研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年01期
页码:
12-18
栏目:
出版日期:
2018-01-30

文章信息/Info

Title:
Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites
文章编号:
1672-3678(2018)01-0012-07
作者:
白云岫曹逊戈钧
清华大学 化学工程系 工业生物催化教育部重点实验室,北京 100084
Author(s):
BAI YunxiuCAO XunGE Jun
Key Laboratory for Industrial Biocatalysis of the Ministry of Education,Department of Chemical Engineering, Tsinghua University,Beijing 10084,China
关键词:
生物催化 固定化酶 纳米材料
分类号:
Q814
DOI:
10.3969/j.issn.1672-3678.2018.01.002
文献标志码:
A
摘要:
具有良好化学、区位和立体选择性的酶是化学品绿色合成的理想催化剂。然而,由于天然酶存在易失活、重复使用困难等问题,以致酶催化的应用范围受到较大限制。随着生物技术、材料科学和纳米技术的快速发展,开发简单、低成本、适用性广的酶固定化载体和方法,提高酶催化剂在工业催化中的应用性能得到了研究者的广泛关注。本文中,笔者总结了近年来在利用功能高分子修饰酶、共沉淀法制备酶-无机晶体复合物方面的一些工作,探讨了这些新型修饰酶和固定化酶的性能、优缺点、应用前景以及未来发展。

参考文献/References:

[1] DICOSIMO R,MCAULIFFE J,POULOSE A J,et al.Industrial use of immobilized enzymes[J].Chem Soc Rev,2013,42(15):6437-6474.
[2] HERNADEZ K,FERNANDEZ-LAFUENTE R.Control of protein immobilization:coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance[J].Enzyme Microb Technol,2011,48(2):107-122.
[3] GE J,YANG C,ZHU J,et al.Nanobiocatalysis in organic media:opportunities for enzymes in nanostructures[J].Topics Catal,2012,55(16/17/18):1070-1080.
[4] WANG R,ZHANG Y,LU D,et al.Functional protein-organic/inorganic hybrid nanomaterials[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2013,5(4):320-328.
[5] WU X,HOU M,GE J.Metal-organic frameworks and inorganic nanoflowers:a type of emerging inorganic crystal nanocarrier for enzyme immobilization[J].Catal Sci Technol,2015,5(12):5077-5085.
[6] ZHANG Y,GE J,LIU Z.Enhanced activity of immobilized or chemically modified enzymes[J].ACS Catal,2015,5(8):4503-4513.
[7] BARBOSA O,ORTIZ C,BERENGUER-MURCI? A,et al.Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts[J].Biotechnol Adv,2015,33(5):435-456.
[8] ZHU J,ZHANG Y,LU D,et al.Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media[J].Chem Commun,2013,49:6090-6092.
[9] GE J,LEI J,ZARE R N.Protein-inorganic hybrid nanoflowers[J].Nat Nanotechnol,2012,7(7):428-432.
[10] LYU F,ZHANG Y,ZARE R N,et al.One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J].Nano Lett,2014,14(10):5761-5765.
[11] MUSZANSKA A K,BUSSCHER H J,HERRMANN A,et al.Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating[J].Biomaterials,2011,32:6333-6341.
[12] ZHANG Y,DAI,HOU M,et al.Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media[J].RSC Adv,2013,3:22963-22966.
[13] WU X,WANG R,ZHANG Y,et al.Enantioselective ammonolysis of phenylglycine methyl ester with lipase-Pluronic nanoconjugate in tertiary butanol[J].Catal Lett,2014,144:1407-1410.
[14] HOU M,WANG R,WU X,et al.Synthesis of lutein esters by using a reusable lipase-Pluronic conjugate as the catalyst[J].Catal Lett,2015,145:1825-1829.
[15] WU X,GE J,ZHU J,et al.A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant[J].Chem Commun,2015,51:9674-9677.
[16] HUANG Y,RAN X,LIN Y,et al.Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions[J].Chem Commun,2015,51:4386-4389.
[17] ZHANG Z,ZHANG Y,HE L,et al.A feasible synthesis of Mn3(PO4)2 @BSA nanoflowers and its application as the support nanomaterial for Pt catalyst[J].J Power Sources,2015,284:170-177.
[18] YE R,ZHU C,SONG Y,et al.Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen[J].Small,2016,12:3094-3100.
[19] LI M,LUO M,LI F,et al.Biomimetic copper-based inorganic-protein nanoflower assembly constructed on the nanoscale fibrous membrane with enhanced stability and durability[J].J Phys Chem C,2016,120:17348-17356.
[20] DUTTA A,DUTTA D,SANPUI P,et al.Biomimetically crystallized protease resistant zinc phosphate decorated with gold atomic clusters for bioimaging[J].Chem Commun,2017,53:1277-1280.
[21] HE X,CHEN L,HE Q,et al.Cytochrome P450 enzyme-copper phosphate hybrid nano-flowers with superior catalytic performances for selective oxidation of sulfides[J].Chin J Chem,2017,35(5):693-698.
[22] HE L,ZHANG S,JI H,et al.Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB[J].Biosens Bioelectron,2016,79:553-560.
[23] WANG L,WANG Y,HE R,et al.A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance[J].J Am Chem Soc,2013,135:1272-1275.
[24] LI Z,ZHANG Y,SU Y,et al.Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes[J].Chem Commun,2014,50:12465-12468.
[25] LI Z,DING Y,WU X,et al.An enzyme-copper nanoparticle hybrid catalyst prepared from disassembly of an enzyme-inorganic nanocrystal three-dimensional nanostructure[J].RSC Adv,2016,6:20772-20776.
[26] ZHANG B,LI P,ZHANG H,et al.Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles:preparation and application to adsorption of heavy metal ions[J].Appl Surface Sci,2016,366:328-338.
[27] ZHANG B,LI P,ZHANG H,et al.Papain/Zn3(PO4)2 hybrid nanoflower:preparation,characterization and its enhanced catalytic activity as an immobilized enzyme[J].RSC Adv,2016,6:46702-46710.
[28] L?PEZ-GALLEGO F,YATE L.Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins:efficient heterogeneous biocatalysts for redox processes[J].Chem Commun,2015,51:8753-8756.
[29] YE R,ZHU C,SONG Y,et al.One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay:detection of E.coli O157:H7 from milk[J].Nanoscale,2016,8:18980-18986.
[30] LI Z,DING Y,LI S,et al.Highly active,stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate[J].Nanoscale,2016,8:17440-17445.
[31] FURUKAWA H,CORDOVA K E,O’KEEFFE M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341:1230444.
[32] YAGHI O M,O’KEEFFE M,OCKWIG N W,et al.Reticular synthesis and the design of new materials[J].Nature,2003,423:705-714.
[33] KLONTZAS E,MAVRANDONAKIS A,TYLIANAKIS E,et al.Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms[J].Nano Lett,2008,8(6):1572-1576.
[34] MORRIS R E,WHEATLEY P S.Gas storage in nanoporous materials[J].Angew Chem Int Ed,2008,47:4966-4981.
[35] LEE J,FARHA O K,ROBERTS J,et al.Metal-organic framework materials as catalysts[J].Chem Soc Rev,2009,38(5):1450-1459.
[36] KHUN N W,MAHDI E M,YING S,et al.Fine-scale tribological performance of zeolitic imidazolate framework(ZIF-8)based polymer nanocomposite membranes[J].APL Materials,2014,2:124101.
[37] MAES M,ALAERTS L,VERMOORTELE F,et al.Separation of C5-hydrocarbons on microporous materials:complementary performance of MOFs and zeolites[J].J Am Chem Soc,2010,132:2284-2292.
[38] MILNER P J,SIEGELMAN R L,FORSE A C,et al.A diaminopropane-appended metal-organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism[J].J Am Chem Soc,2017,139:13541-13553.
[39] CHEN Y,LYKOURINOU V,VETROMILE C,et al.How can proteins enter the interior of a MOF:investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J].J Am Chem Soc,2012,134:13188-13191.
[40] XU M,YUAN S,CHEN X,et al.Two-dimensional metal-organic framework nanosheets as an enzyme inhibitor:modulation of the α-chymotrypsin activity[J].J Am Chem Soc,2017,139:8312-8319.
[41] KLIBANOV A M.Immobilized enzymes and cells as practical catalysts[J].Science,1983,219:722-727.
[42] HUDSON S,COONEY J,MAGNER E.Proteins in mesoporous silicates[J].Angew Chem Int Ed,2008,47:8582-8594.
[43] ENGSTR?M K,JOHNSTON E V,VERHO O,et al.Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis:an artificial metalloenzyme[J].Angew Chem Int Ed,2013,125:14256-14260.
[44] DATTA S,CHRISTENA L R,RAJARAM Y R S.Enzyme immobilization:an overview on techniques and support materials[J].3 Biotech,2013,3(1):1-9.
[45] LYKOURINOU V,CHEN Y,WANG X,et al.Immobilization of MP-11 into a mesoporous metal-organic framework,MP-11@mesoMOF:a new platform for enzymatic catalysis[J].J Am Chem Soc,2011,133:10382-10385.
[46] FENG D,LIU T,SU J,et al.Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation[J].Nat Commun,2015,6:5979.
[47] LI P,MOON S,GUELTA M A,et al.Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability[J].J Am Chem Soc,2016,138:8052-8055.
[48] LI P,MOON S,GUELTA M A,et al.Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis[J].ACS Nano,2016,10:9174-9182.
[49] LIAN X,CHEN Y,LIU T,et al.Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF[J].Chem Sci,2016,7:6969-6973.
[50] ZHANG C,WANG X,HOU M,et al.Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection[J].ACS Appl Mater Interfaces,2017,9:13831-13836.
[51] JUNG S,KIM Y,KIM S,et al.Bio-functionalization of metal-organic frameworks by covalent protein conjugation[J].Chem Commun,2011,47:2904-2906.
[52] MA W,JIANG Q,YU P,et al.Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements[J].Anal Chem,2013,85:7550-7557.
[53] LIU W,LO S,SINGCO B,et al.Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion[J].J Mater Chem B,2013,1:928-932.
[54] PATRA S,HIDALGO CRESPO T,PERMYAKOVA A,et al.Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform[J].J Mater Chem B,2015,3:8983-8992.
[55] CAO S,YUE D,LI X,et al.Novel nano-/micro-biocatalyst:soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure(R)-1,2-octanediol in deep eutectic solvents[J].ACS Sustainable Chem Eng,2016,4(6):3586-3595.
[56] XIA G,CAO S,XU P,et al.Preparation of a nanobiocatalyst by efficiently immobilizing Aspergillus niger lipase onto magnetic metal-biomolecule frameworks(BioMOF)[J].ChemCatChem,2017,9(10):1794-1800.
[57] HAYASHI H,C?T? A P,FURUKAWA H,et al.Zeolite a imidazolate frameworks[J].Nat Mater,2007,6:501-506.
[58] WU X,YANG C,GE J.Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents.[J].Bioresour Bioprocess,2017,4:24.
[59] HOU M,GE J.Armoring enzymes by metal-organic frameworks by the coprecipitation method[J].Methods Enzymol,2017,590:59-75.
[60] LIANG K,RICCO R,DOHERTY C M,et al.Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J].Nat Commun,2015,6:7240.
[61] SHIEH F,WANG S,YEN C,et al.Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach:size-selective sheltering of catalase in metal-organic framework microcrystals[J].J Am Chem Soc,2015,137:4276-4279.
[62] LI S,DHARMARWARDANA M,WELCH R P,et al.Template-directed synthesis of porous and protective core-shell bionanoparticles[J].Angew Chem Int Ed,2016,55:10691-10696.
[63] HE H,HAN H,SHI H,et al.Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization:a biocatalyst for ester hydrolysis and kinetic resolution[J].ACS Appl Mater Interfaces,2016,8:24517-24524.
[64] CUI J,FENG Y,LIN T,et al.Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization[J].ACS Appl Mater Interfaces,2017,9:10587-10594.
[65] WU X,GE J,YANG C,et al.Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment[J].Chem Commun,2015,51:13408-13411.
[66] WU X,YANG C,GE J,et al.Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability[J].Nanoscale,2015,7:18883-18886.
[67] HOU M,ZHAO H,FENG Y,et al.Synthesis of patterned enzyme-metal-organic framework composites by ink-jet printing[J].Bioresour Bioprocess,2017,4:40.

相似文献/References:

[1]何玉财,许建和.腈水解酶在羧酸合成中的研究进展[J].生物加工过程,2009,7(01):7.[doi:002]
 HE Yu-cai,XU Jian-he.Nitrilase mediated hydrolysis of nitriles in organic acid synthesis[J].Chinese Journal of Bioprocess Engineering,2009,7(01):7.[doi:002]
[2]张磊,何玉财,仝新利,等.离子液体的性能及应用[J].生物加工过程,2009,7(02):8.
 ZHANG Lei,HE Yu-cai,TONG Xin-li,et al.Properties and application of ionic liquids[J].Chinese Journal of Bioprocess Engineering,2009,7(01):8.
[3]孙广海,周华,朱跃钊,等.双水相生物催化技术的研究进展[J].生物加工过程,2004,2(03):19.[doi:10.3969/j.issn.1672-3678.2004.03.005]
[4]孙志浩.手性技术与生物催化[J].生物加工过程,2004,2(04):6.[doi:10.3969/j.issn.1672-3678.2004.04.002]
[5]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(01):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
[6]杨晟,杨蕴刘,袁中一,等.以技术集成促进生物催化技术转移[J].生物加工过程,2006,4(01):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
 YANG Sheng,YANG Yun-liu,YUAN Zhong-yi,et al.Promotion of biocatalysis technology transfer with technology integration[J].Chinese Journal of Bioprocess Engineering,2006,4(01):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
[7]聂尧,徐岩.生物催化立体选择性氧化还原中存在问题及其发展策略[J].生物加工过程,2008,6(02):1.[doi:10.3969/j.issn.1672-3678.2008.02.001]
 NIE Yao,XU Yan.Biocatalytic systems for stereoselective oxidoreduction: existing limitations and development strategies[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.02.001]
[8]欧阳立明,许建和.生物催化与生物转化研究进展[J].生物加工过程,2008,6(03):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
 OUYANG Li-ming,XU Jian-he.Progress in biocatalysis and biotransformation[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
[9]王笑,徐铮,李莎,等.一种源于枯草芽孢杆菌的新型甘露糖-6-磷酸异构酶的基因克隆与表达[J].生物加工过程,2018,16(06):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]
 WANG Xiao,XU Zheng,LI Sha,et al.Cloning and expression of a novel mannose-6-phosphate isomerase from Bacillus subtilis[J].Chinese Journal of Bioprocess Engineering,2018,16(01):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]
[10]陈佩佩,龚林军,吕永琴.多孔整体柱固定化酶研究进展[J].生物加工过程,2019,17(01):36.[doi:10.3969/j.issn.1672-3678.2019.01.006]
 CHEN Peipei,GONG Linjun,L? Yongqin.New development and application of porous monoliths as solid supports for immobilization of enzymes[J].Chinese Journal of Bioprocess Engineering,2019,17(01):36.[doi:10.3969/j.issn.1672-3678.2019.01.006]

备注/Memo

备注/Memo:
收稿日期:2017-08-10修回日期:2017-09-28
作者简介:白云岫(1995—),男,河北昌黎人,博士研究生,研究方向:酶催化; 戈钧(联系人),特别研究员,博士生导师,E-mail:junge@mail.tsinghua.edu.cn
引文格式:白云岫,曹逊,戈钧.高分子修饰/无机晶体固定化酶研究进展[J].生物加工过程,2018,16(1):12-18.
BAI Yunxiu,CAO Xun,GE Jun.Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites[J].Chin J Bioprocess Eng,2018,16(1):12-18..
更新日期/Last Update: 2018-01-30