|本期目录/Table of Contents|

[1]聂尧,徐岩.生物催化立体选择性氧化还原中存在问题及其发展策略[J].生物加工过程,2008,6(02):1-9.[doi:10.3969/j.issn.1672-3678.2008.02.001]
 NIE Yao,XU Yan.Biocatalytic systems for stereoselective oxidoreduction: existing limitations and development strategies[J].Chinese Journal of Bioprocess Engineering,2008,6(02):1-9.[doi:10.3969/j.issn.1672-3678.2008.02.001]
点击复制

生物催化立体选择性氧化还原中存在问题及其发展策略()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
6
期数:
2008年02期
页码:
1-9
栏目:
出版日期:
2008-03-30

文章信息/Info

Title:
Biocatalytic systems for stereoselective oxidoreduction: existing limitations and development strategies
作者:
聂尧徐岩
江南大学, 工业生物技术教育部重点实验室, 江南大学, 生物工程学院, 无锡, 214122
Author(s):
NIE Yao XU Yan
关键词:
生物催化立体选择性氧化还原局限性发展策略
分类号:
Q81
DOI:
10.3969/j.issn.1672-3678.2008.02.001
摘要:
以立体选择性氧化还原酶或其全细胞催化的不对称氧化还原反应已经成为转化光学活性手性醇及其他手性化合物的有效手段.然而,生物催化氧化还原反应体系存在着催化活性与专一性、反应体系与催化稳定性等生物催化剂所固有的局限性问题,而且,生物氧化还原反应必需辅酶及其再生问题也是限制该转化途径产业化应用的一个重要因素.围绕上述生物催化立体选择性氧化还原中存在的关键问题,现代分子生物技术及反应工程的不断突破和发展为改善生物催化立体选择性氧化还原在催化剂本身和反应工程方面的局限性提供了有效的发展策略,为其进一步大规模产业应用提供了发展基础.

参考文献/References:

[1] Noyori R. Asymmetric catalysis:science and opportunities (nobel lecture) [J]. Angewandte Chemie International Edition, 2002, (41):2008-2022.doi:10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4.
[2] De Nmark S E. Catalysts break symmetry [J]. Nature, 2006.40-41.
[3] Schmid A, Dordick J S, Hauer B. Industrial biocatalysis today and tomorrow [J]. Nature, 2001.258-268.doi:10.1038/35051736.
[4] Khosla C, Harbury P B. Modular enzymes [J]. Nature, 2001.247-252.doi:10.1038/35051723.
[5] Mukherjee S, List B. Radical catalysis [J]. Nature, 2007.152-153.doi:10.1038/447152a.
[6] Kroutil W, Mang H, Edegger K. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols [J]. Current Opinion in Chemical Biology, 2004(8):120-126.doi:10.1016/j.cbpa.2004.02.005.
[7] Schoemaker H E, Mink D, Wubbolts M G. Dispelling the myths-biocatalysis in industrial synthesis [J]. Science, 2003.1694-1698.doi:10.1126/science.1079237.
[8] Thayer A M. Biocatalysis helps reach a resolution [J]. Chemical and Engineering News, 2006, (33):29-31.doi:10.1021/cen-v084n033.p029.
[9] Hartwig J. Recipes for excess [J]. NATURE, 2005.487-488.doi:10.1038/437487a.
[10] Garcla-Urdiales E, Alfonso I, Gotor V. Enantioselective enzymatic desymmetrizations in organic synthesis [J]. Chemical Reviews, 2005, (1):313-354.doi:10.1021/cr040640a.
[11] Shigeru K, Miho H, Yoshihiko Y. Microbial enantioselective reduction of acetylpyridine derivatives [J]. Bioscience, Biotechnology, and Biochemistry, 2003.809-814.
[12] Hage A, Schoemaker H E, Field J A. Optimization of stereoselective ketone reduction by the white-rot fungus Merulius tremellosus ono 991 [J]. Applied Microbiology and Biotechnology, 2001.79-84.doi:10.1007/s002530100730.
[13] Yasohara Y, Kizaki N, Hasegawa J. Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction [J]. Applied Microbiology and Biotechnology, 1999.847-851.doi:10.1007/s002530051472.
[14] Amidjojo M, Franco-Lara E, Nowak A. Asymmetric synthesis of tert-butyl (3R, 5S)6-chloro-dihydroxyhexanoate with Lactobacillus kefir [J]. Applied Microbiology and Biotechnology, 2005.9-15.doi:10.1007/s00253-005-1921-6.
[15] Gao K, Wei D. Asymmetric oxidation by Gluconobacter oxydans [J]. Applied Microbiology and Biotechnology, 2006(2):135-139.doi:10.1007/s00253-005-0307-0.
[16] Nie Y, Xu Y, Mu X Q. High enantioselective conversion of racemic 1-phenyl-1, 2-ethanediol by stereoinversion involving a novel cofactor dependent oxidoreduction system [J]. Organic Process Research & Development, 2004, (12):246-251.doi:10.1021/op0341519.
[17] Nie Y, Xu Y, Mu X Q. High-yield conversion of (R)-2-octanol from the corresponding racemate by stereoinversion using Candida rugosa [J]. Biotechnology Letters, 2005(1):23-26.doi:10.1007/s10529-004-6310-1.
[18] Nanba H, Takaoka Y, Hasegawa J. Purification and characterization of formate dehydrogenase from Ancylobacter aquaticus strain KNK607M, and cloning of the gene [J]. Bioscience, Biotechnology, and Biochemistry, 2003, (4):720-728.doi:10.1271/bbb.67.720.
[19] Nanba H, Takaoka Y, Hasegawa J. Purification and characterization of anα-haloketone-resistant formate dehydrogenase from Thiobacillus sp.strain KNK65MA, and cloning of the gene [J]. Bioscience, Biotechnology, and Biochemistry, 2003, (10):2145-2153.doi:10.1271/bbb.67.2145.
[20] Kizaki N, Sawa I, Yano M. Purification and characterization of a yeast carbonyl reductase for synthesis of optically active (R)-styrene oxide derivatives [J]. Bioscience, Biotechnology, and Biochemistry, 2005, (1):79-86.doi:10.1271/bbb.69.79.
[21] Wada M, Kataoka M, Kawabata H. Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae [J]. Bioscience, Biotechnology, and Biochemistry, 1998, (2):280-285.doi:10.1271/bbb.62.280.
[22] Hildebrandt P, Musidlowska A, Bornscheuer U T. Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106 [J]. Applied Microbiology and Biotechnology, 2002, (4/5):483-487.doi:10.1007/s00253-002-1036-2.
[23] Itoh N, Asako H, Banno K. Purification and characterization of NADPH-dependent aldo keto reductase specific for β-keto esters from Penicillium citrinum, and production of methyl (S)-4-bromo-3-hydroxybutyrate [J]. Applied Microbiology and Biotechnology, 2004.53-62.doi:10.1007/s00253-004-1702-7.
[24] Jaureguibeitia A, Saá L, Llama M J. Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1 [J]. Applied Microbiology and Biotechnology, 2007(5):1073-1086.doi:10.1007/s00253-006-0558-4.
[25] Uchida H, Fukuda T, Satoh Y. Characterization and potential application of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695 [J]. Applied Microbiology and Biotechnology, 2005.53-56.doi:10.1007/s00253-005-1894-5.
[26] Nie Y, Xu Y, Yang M. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1, 2-ethanediol-producing microorganism:purification and characterization [J]. Letters in Applied Microbiology, 2007, (5):555-562.doi:10.1111/j.1472-765X.2006.02100.x.
[27] Nie Y, Xu Y, Mu X Q. Purification, characterization, gene cloning and expression of a novel carbonyl reductase with anti-Prelog stereospecificity from Candida parapsilosis [J]. Applied and Environmental Microbiology, 2007, (11):3759-3764.doi:10.1128/AEM.02185-06.
[28] Wackett L P. Novel biocatalysis by database mining [J]. Current Opinion in Biotechnology, 2004, (15):280-284.doi:10.1016/j.copbio.2004.05.003.
[29] Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues [J]. Applied Microbiology and Biotechnology, 2003.133-139.
[30] Yasohara Y, Kizaki N, Hasegawa J. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate [J]. Bioscience, Biotechnology, and Biochemistry, 2000.1430-1436.
[31] Ernst M, Kaup B, Mller M. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase [J]. Applied Microbiology and Biotechnology, 2005.629-634.doi:10.1007/s00253-004-1765-5.
[32] Jaeger K E, Eggert T. Enantioselective biocatalysis optimized by directed evolution [J]. Current Opinion in Biotechnology, 2004, (15):305-313.doi:10.1016/j.copbio.2004.06.007.
[33] Wahler D, Reymond J L. Novel methods for biocatalyst screening [J]. Current Opinion in Chemical Biology, 2001(5):152-158.doi:10.1016/S1367-5931(00)00184-8.
[34] Bornscheuer U T, Pohl M. Improved biocatalysts by directed evolution and rational protein design [J]. Current Opinion in Chemical Biology, 2001(5):137-143.doi:10.1016/S1367-5931(00)00182-4.
[35] Champreda V, Choi Y J, Zhou N Y. Alteration of the stereo-and regioselectivity of alkene monooxygenase based on coupling protein interactions [J]. Applied Microbiology and Biotechnology, 2006(6):840-847.doi:10.1007/s00253-005-0208-2.
[36] Morikawa S, Nakai T, Yasohara Y. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols [J]. Bioscience, Biotechnology, and Biochemistry, 2005, (3):544-552.doi:10.1271/bbb.69.544.
[37] Gruber C C, Lavandera I, Faber K. From a racemate to a single enantiomer:deracemization by stereoinversion [J]. Ade Synth Catal, 2006.1789-1805.
[38] Turner N J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions [J]. Current Opinion in Chemical Biology, 2004(8):114-119.doi:10.1016/j.cbpa.2004.02.001.
[39] Klibanov A M. Asymmetric enzymatic oxidoreductions in organic solvents [J]. Current Opinion in Biotechnology, 2003, (14):427-431.doi:10.1016/S0958-1669(03)00074-0.
[40] Lee M Y, Dordick J S. Enzyme activation for nonaqueous media [J]. Current Opinion in Biotechnology, 2002, (13):376-384.doi:10.1016/S0958-1669(02)00337-3.
[41] Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquids [J]. Current Opinion in Biotechnology, 2002, (13):565-571.doi:10.1016/S0958-1669(02)00353-1.
[42] Halling P J. Biocatalysis in low-water media:understanding effects of reaction conditions [J]. Current Opinion in Chemical Biology, 2000(4):74-80.doi:10.1016/S1367-5931(99)00055-1.
[43] Zhao L Q, Sun Z H, Zheng P. Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8 [J]. Process Biochemistry, 2006, (7):1673-1676.doi:10.1016/j.procbio.2006.02.007.
[44] De Carvalho CCCR, Poretti A, da Fonseca MMR. Cell adaptation to solvent, substrate and product:a successful strategy to overcome product inhibition in a bioconversion system [J]. Applied Microbiology and Biotechnology, 2005.268-275.doi:10.1007/s00253-005-1967-5.
[45] Filling C, Nordling E, Benach J. Structural role of conserved Asn179 in the short-chaindehydrogenase/reductase scaffold [J]. Biochemical and Biophysical Research Communications, 2001.712-717.doi:10.1006/bbrc.2001.6032.
[46] Zhao H, van der Donk W A. Regeneration of cofactors for use in biocatalysis [J]. Current Opinion in Biotechnology, 2003, (14):583-589.doi:10.1016/j.copbio.2003.09.007.
[47] Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale [J]. Advances in Biochemical Engineering/Biotechnology, 2005.225-260.
[48] 吕腾飞, 徐岩, 穆晓清. 木糖辅助底物对近平滑假丝酵母催化(R, S)-苯基乙二醇不对称氧化还原合成(S)-苯基乙二醇体系稳定性的促进作用 [J]. 催化学报, 2007(5):446-450.doi:10.3321/j.issn:0253-9837.2007.05.014.
[49] Ansell R J, Lowe C R. Artificial redox coenzymes:biomimetic analogues of NAD+ [J]. Applied Microbiology and Biotechnology, 1999.703-710.doi:10.1007/s002530051455.
[50] Burton S G, Cowan D A, Woodley J M. The search for the ideal biocatalyst [J]. Nature Biotechnology, 2002, (1):37-45.doi:10.1038/nbt0102-37.
[51] Petrounia I P, Arnold F H. Designed evolution of enzymatic properties [J]. Current Opinion in Biotechnology, 2000, (11):325-330.doi:10.1016/S0958-1669(00)00107-5.

相似文献/References:

[1]何玉财,许建和.腈水解酶在羧酸合成中的研究进展[J].生物加工过程,2009,7(01):7.[doi:002]
 HE Yu-cai,XU Jian-he.Nitrilase mediated hydrolysis of nitriles in organic acid synthesis[J].Chinese Journal of Bioprocess Engineering,2009,7(02):7.[doi:002]
[2]张磊,何玉财,仝新利,等.离子液体的性能及应用[J].生物加工过程,2009,7(02):8.
 ZHANG Lei,HE Yu-cai,TONG Xin-li,et al.Properties and application of ionic liquids[J].Chinese Journal of Bioprocess Engineering,2009,7(02):8.
[3]孙广海,周华,朱跃钊,等.双水相生物催化技术的研究进展[J].生物加工过程,2004,2(03):19.[doi:10.3969/j.issn.1672-3678.2004.03.005]
[4]孙志浩.手性技术与生物催化[J].生物加工过程,2004,2(04):6.[doi:10.3969/j.issn.1672-3678.2004.04.002]
[5]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
[6]杨晟,杨蕴刘,袁中一,等.以技术集成促进生物催化技术转移[J].生物加工过程,2006,4(01):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
 YANG Sheng,YANG Yun-liu,YUAN Zhong-yi,et al.Promotion of biocatalysis technology transfer with technology integration[J].Chinese Journal of Bioprocess Engineering,2006,4(02):1.[doi:10.3969/j.issn.1672-3678.2006.01.001]
[7]欧阳立明,许建和.生物催化与生物转化研究进展[J].生物加工过程,2008,6(03):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
 OUYANG Li-ming,XU Jian-he.Progress in biocatalysis and biotransformation[J].Chinese Journal of Bioprocess Engineering,2008,6(02):1.[doi:10.3969/j.issn.1672-3678.2008.03.001]
[8]白云岫,曹逊,戈钧.高分子修饰/无机晶体固定化酶研究进展[J].生物加工过程,2018,16(01):12.[doi:10.3969/j.issn.1672-3678.2018.01.002]
 BAI Yunxiu,CAO Xun,GE Jun.Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites[J].Chinese Journal of Bioprocess Engineering,2018,16(02):12.[doi:10.3969/j.issn.1672-3678.2018.01.002]
[9]王笑,徐铮,李莎,等.一种源于枯草芽孢杆菌的新型甘露糖-6-磷酸异构酶的基因克隆与表达[J].生物加工过程,2018,16(06):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]
 WANG Xiao,XU Zheng,LI Sha,et al.Cloning and expression of a novel mannose-6-phosphate isomerase from Bacillus subtilis[J].Chinese Journal of Bioprocess Engineering,2018,16(02):30.[doi:10.3969/j.issn.1672-3678.2018.06.006]
[10]陈飞飞,汪东浩,许建和,等.胺脱氢酶催化合成手性胺的机遇与挑战[J].生物加工过程,2020,18(01):70.[doi:10.3969/j.issn.1672-3678.2020.01.009]
 CHEN Feifei,WANG Donghao,XU Jianhe,et al.Opportunities and challenges of amine dehydrogenases for chiral amine synthesis[J].Chinese Journal of Bioprocess Engineering,2020,18(02):70.[doi:10.3969/j.issn.1672-3678.2020.01.009]

备注/Memo

备注/Memo:
基金项目:国家重点基础研究发展规划(973计划),国家高技术研究发展计划(863计划),国家自然科学基金,教育部长江学者和创新团队发展计划,教育部新世纪优秀人才支持计划
更新日期/Last Update: 1900-01-01