|本期目录/Table of Contents|

[1]马成伟,孙亚琴,修志龙.葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气的代谢计量分析[J].生物加工过程,2006,4(03):44-50.[doi:10.3969/j.issn.1672-3678.2006.03.008]
 MA Cheng-wei,SUN Ya-qin,XIU Zhi-long.Stoichiometric analysis of cofermentation of glucose and xylose to 2,3-butanediol and hydrogen by Klebsiela pneumoniae[J].Chinese Journal of Bioprocess Engineering,2006,4(03):44-50.[doi:10.3969/j.issn.1672-3678.2006.03.008]
点击复制

葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气的代谢计量分析()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
4
期数:
2006年03期
页码:
44-50
栏目:
出版日期:
2006-08-30

文章信息/Info

Title:
Stoichiometric analysis of cofermentation of glucose and xylose to 2,3-butanediol and hydrogen by Klebsiela pneumoniae
作者:
马成伟孙亚琴修志龙
大连理工大学, 环境与生命学院, 大连, 116024
Author(s):
MA Cheng-wei SUN Ya-qin XIU Zhi-long
关键词:
23-丁二醇葡萄糖木糖代谢计量分析
分类号:
Q591
DOI:
10.3969/j.issn.1672-3678.2006.03.008
摘要:
以Klebsiella pneumoniae利用葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气过程为研究对象,对其进行代谢计量分析.分析结果显示:2,3-丁二醇和氢气相对于底物葡萄糖和木糖的质量收率依赖于还原能力NADH,氧化磷酸化的分率(δ).当δ=2/7时,即在总还原能力NADH2中有2/7mol NADH2被氧化磷酸化,剩余部分用来产生氢气,呼吸商为14时,2,3-丁二醇和氢气的最优质量收率分别为50%和0.8%;而当δ=1,即还原能力NADH2全部被氧化磷酸化、不产生氢气,呼吸商为4时,2,3-丁二醇的质量收率为37.5%;2,3-丁二醇和氢气的质量收率与底物中葡萄糖和木糖的比值无关.而氢气的摩尔收率与底物中葡萄糖和木糖的比值相关,当底物全部是葡萄糖或木糖时,其最优摩尔收率分别为71%和60%.该分析结果为葡萄糖和木糖双底物生物转化生产2,3-丁二醇过程的实验研究奠定了理论基础.

参考文献/References:

[1] Garg S K, Jain A. Fermentative production of 2, 3-butanediol:a review [J]. BioResource Technology, 1995(5):1103-1109.
[2] Flichinger M C. Current biological research in conversion of cellulosic carbohydrates into liquid fuels:how far have we come [J]. Biotechnology and Bioengineering, 1980.27-48.
[3] Syu M J. Biological production of 2, 3-butangeiol [J]. Applied Microbiology and Biotechnology, 2001.10-18.
[4] Frazer F R, McCaskey T A. Effect of components of acid-hydrolysed hardwood on conversion of D-xylose to 2, 3-butanediol by Klebsiella pneumoniae [J]. Enzyme and Microbial Technology, 1991.110-115.doi:10.1016/0141-0229(91)90164-6.
[5] Jansen N B, Flichinger M C, Tsao G T. Production of 2, 3-butanediol from D-xylose by Klebsiella oxytoca ATTC8724 [J]. Biotechnology and Bioengineering, 1984.362-369.doi:10.1002/bit.260260411.
[6] Zeng A P, Biebl H, Schlieker H. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:regulation of reducing equivalent balance and product formation [J]. Enzyme and Microbial Technology, 1993.770-779.doi:10.1016/0141-0229(93)90008-P.
[7] Vignais P M, Billoud B, Meyer J. Classification and phylogeny of hydrogenases [J]. FEMS Microbiology Reviews, 2001.455-501.
[8] Das D, Veziroglu T N. Hydrogen production by biological processes:a survey of literature [J]. International Journal of Hydrogen Energy, 2001, (1):13-28.doi:10.1016/S0360-3199(00)00058-6.
[9] Koku H, Eroglu I, Gunduz U. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides [J]. International Journal of Hydrogen Energy, 2002, (11/12):1315-1329.doi:10.1016/S0360-3199(02)00127-1.
[10] Norman B J, Jansen M C, Flickinger. Production of 2, 3-butane-diol from d-xylose by Klebsiella oxytoca ATCC 8724 [J]. Biotechnology and Bioengineering, 1984.362-368.doi:10.1002/bit.260260411.
[11] Saha B C. Hemicellulose bioconversion [J]. Journal of Industrial Microbiology and Biotechnology, 2000.279-291.doi:10.1007/s10295-003-0049-x.
[12] Chen X, Xiu Z L, Wang J F. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1, 3-propanediol by Klebsiella pneumoniae under microaerobic conditions [J]. Enzyme and Microbial Technology, 2003, (4):386-394.doi:10.1016/S0141-0229(03)00135-2.
[13] Zeng A P, Byun T G, Possten C. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2, 3-butanediol production under microaerobic conditions [J]. Biotechnology and Bioengineering, 1994.1107-1114.doi:10.1002/bit.260440912.

相似文献/References:

[1]马翠卿,李理想,高超.基于生物质资源的化工多元醇生物炼制研究进展[J].生物加工过程,2013,11(02):44.[doi:10.3969/j.issn.1672-3678.2013.02.007]
 MA Cuiqing,LI Lixiang,GAO Chao.Recent progress of biorefinery of polyols based on biomass resources[J].Chinese Journal of Bioprocess Engineering,2013,11(03):44.[doi:10.3969/j.issn.1672-3678.2013.02.007]
[2]王宝峰,郑裕国,沈寅初.产S-酰胺酶培养基统计学筛选与响应面优化[J].生物加工过程,2008,6(02):48.[doi:10.3969/j.issn.1672-3678.2008.02.009]
 WANG Bao-feng,ZHENG Yu-guo,SHEN Yin-chu.Optimization of medium components for S-amidase production using response surface methodology[J].Chinese Journal of Bioprocess Engineering,2008,6(03):48.[doi:10.3969/j.issn.1672-3678.2008.02.009]
[3]张帜,李理想,马翠卿.芽胞杆菌发酵产2,3-丁二醇的研究进展及展望[J].生物加工过程,2014,12(03):79.[doi:10.3969/j.issn.1672-3678.2014.03.016]
 ZHANG Zhi,LI Lixiang,MA Cuiqing.Research advance and prospects of fermentation of 2,3-butanediol by Bacillus sp.[J].Chinese Journal of Bioprocess Engineering,2014,12(03):79.[doi:10.3969/j.issn.1672-3678.2014.03.016]
[4]杜军,纪晓俊,黄和,等.产酸克雷伯氏杆菌发酵产2,3-丁二醇的培养基优化[J].生物加工过程,2009,7(01):34.
 DU Jun,JI Xiao-jun,HUANG He,et al.Optimization of fermentation medium for production of 2,3-butanediol by Klebsiella oxytoca[J].Chinese Journal of Bioprocess Engineering,2009,7(03):34.
[5]江波,张江红,李志刚,等.2,3-丁二醇的发酵及盐析分离工艺[J].生物加工过程,2009,7(01):44.
 JIANG Bo,ZHANG Jiang-hong,LI Zhi-gang,et al.Fermentation and salting-out Separation of 2,3-butanediol [J].Chinese Journal of Bioprocess Engineering,2009,7(03):44.
[6]秦加阳,肖梓军,张兆斌,等.一种简单的高产2,3-丁二醇发酵生产方法[J].生物加工过程,2005,3(04):71.[doi:10.3969/j.issn.1672-3678.2005.04.016]
 QIN Jia-yang,XIAO Zi-jun,Zhang Zao-bin,et al.A simple method of 2,3-butanediol production[J].Chinese Journal of Bioprocess Engineering,2005,3(03):71.[doi:10.3969/j.issn.1672-3678.2005.04.016]

更新日期/Last Update: 1900-01-01