|本期目录/Table of Contents|

[1]黄敏,宗敏华.离子液体对固定化Saccharomyces cerevisiae细胞催化乙酰基三甲基硅烷不对称还原反应的影响[J].生物加工过程,2005,3(03):52-57.[doi:10.3969/j.issn.1672-3678.2005.03.011]
 HUANG Min,ZONG Min-hua.Effect of ionic liquid on asymmetric reduction of acetyltrimethylsilane catalyzed by immobilized Saccharomyces cerevisiae cells[J].Chinese Journal of Bioprocess Engineering,2005,3(03):52-57.[doi:10.3969/j.issn.1672-3678.2005.03.011]
点击复制

离子液体对固定化Saccharomyces cerevisiae细胞催化乙酰基三甲基硅烷不对称还原反应的影响()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
3
期数:
2005年03期
页码:
52-57
栏目:
出版日期:
2005-08-30

文章信息/Info

Title:
Effect of ionic liquid on asymmetric reduction of acetyltrimethylsilane catalyzed by immobilized Saccharomyces cerevisiae cells
作者:
黄敏宗敏华
华南理工大学, 生物科学与工程学院, 广州, 510640
Author(s):
HUANG Min ZONG Min-hua
关键词:
乙酰基三甲基硅烷不对称还原固定化面包酵母细胞离子液体
分类号:
Q814
DOI:
10.3969/j.issn.1672-3678.2005.03.011
摘要:
对比研究了C4MIm·BF4-缓冲液混合体系和缓冲液单相体系中固定化面包酵母 Saccharomyces cerevisiae 细胞催化乙酰基三甲基硅烷不对称还原反应的特性,系统探讨了离子液体C4MIm·BF4对该反应的初速度、最大转化率和产物对映体纯度的影响规律.在各自最优的反应条件下,固定化面包酵母细胞在缓冲液单相体系中催化乙酰基三甲基硅烷不对称还原反应的初速度、最大转化率及产物e.e.值分别为84.8 mmol/(L·h)、99.2%和≥99.9%;而在C4MIm·BF4-缓冲液混合体系中,该反应的初速度、最大转化率及产物e.e.值分别为87.0 mmol/(L·h)、99.0%和≥99.9%.离子液体的存在,提高了固定化面包酵母细胞催化该反应的速度,但降低了固定化酵母细胞的操作稳定性.

参考文献/References:

[1] Lagos FM, Del CC, Llama EF. New yeast strains for enantioselective production of halohydrin precursor of(S)-propranolol [J]. Enzyme and Microbial Technology, 2002(7):895-901.doi:10.1016/S0141-0229(02)00023-6.
[2] Cull SG, Holbrey JD, Vargas MV. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations [J]. Biotechnology and Bioengineering, 2000(2):227-233.doi:10.1002/(SICI)1097-0290(20000720)69:2<227::AID-BIT12>3.0.CO;2-0.
[3] Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cataions and fluoroanions [J]. Journal of Fluorine Chemistry, 2000(2):221-227.
[4] Reichardt C. Solvatochromic dyes as solvent polarity indicators [J]. Chemical Reviews, 1994(9):2319-2358.
[5] Zhao H. Current studies on some physical properties of ionic liquids [J]. Phy Chem Liquids, 2003(6):545-557.doi:10.1080/003191031000117319.
[6] Aki K, Brennecke JF, Samanta A. How polar are room-temperature ionic liquids [J]. Chemical Communications, 2001(5):413-414.
[7] Picquet M, Poinsot D, Stutzmann S. Ionic liquids:media for better molecular catalysis [J]. Topics in Catalysis, 2004, (3-4):139-143.doi:10.1023/B:TOCA.0000029796.11969.ec.
[8] Brausch N, Metlen A, Wasserscheid P. New, highly acidic ionic liquid systems and their application in the carbonylation of toluene [J]. Chemical Communications, 2004, (13):1552-1553.doi:10.1039/b403464c.
[9] Colvin EW. Silicon reagents in organic synthesis [M]. New York:Academic Press, 1988.1-5.
[10] Tacke R, Zilch H. Sila-substitutions:a useful strategy for drug design [J]. Endeavour, 1986(4):191-197.doi:10.1016/0160-9327(86)90093-1.
[11] Tacke R, Hengelsberg H, Zilch H. Enantioselective microbial reduction of 1, 1-dimethyl-1-sila-cyclohexan-2-one with growing cells of the yeast Kloeckera corticis(ATCC 20109) [J]. Journal of Organometallic Chemistry, 1989(3):211-216.
[12] Tacke R, Wagner SA, Wuttke F. Synthesis of acetyldimethyl(phenyl)silane and its enantioselective conversion into (R)-(1-hydroxyethye)dimethyl(phenyl) silane by plant cell suspension cultures of Symphytum officinale L and Ruta graveolens L [J]. Journal of Organometallic Chemistry, 1993.13-17.
[13] Zong MH, Fukui T, Kawamoto T. Bioconversion of organosilicon compounds by horse liver alcohol dehydrogenase:the role of the silicon atom in enzymatic reaction [J]. Applied Microbiology and Biotechnology, 1991(1):40-43.
[14] Tanaka A, Fukui T, Zong MH. Bioconversion of non-natural organic compounds:esterification and dehydrogenation of organosilicon compounds [J]. Annals of The New York Academy of Sciences, 1992.431-435.
[15] Uejima A, Fukui T, Fukusaki E. Efficient kinetic resolution of organosilicon compounds by stereoselective esterification with hydrolases in organic solvent [J]. Applied Microbiology and Biotechnology, 1993(4):482-486.
[16] Abdel HD, Blanco L. Synthesis of optically active 2-sila-1, 3-propanediols derivatives by enzymatic transesterification [J]. Tetrahedron Letters, 1991, (44):6325-6326.
[17] Li N, Zong MH, Liu C. (R)-Oxynitrilase-catalysed synthesis of chiral silicon-containing aliphatic(R)-ketone-cyanohydrins [J]. Biotechnology Letters, 2003(3):219-222.
[18] Peng HS, Zong MH, Wang JF. Lipase-catalyzed ammonolysis of trimethylsilylmethyl acetate in organic solvent [J]. Biocatalysis and Biotransformation, 2004(3):183-187.
[19] Yamanaka H, Kawamoto T, Tanaka A. Enzymatic preparation of optically active silicon-containing amino acids [J]. Applied Microbiology and Biotechnology, 1996(1):51-55.
[20] Zani P. Biotransformations of organosilicon compounds:enantioselective reduction of acyl silanes by means of baker′s yeast [J]. Journal of Molecular Catalysis B:Enzymatic, 2001, (4/6):279-285.doi:10.1016/S1381-1177(00)00052-7.
[21] Lou WY, Zong MH, Zhang YY. Efficient synthesis of optically active organosilyl alcohol via asymmetric reduction of acyl silane with immobilized yeast [J]. Enzyme and Microbial Technology, 2004, (2-3):190-196.doi:10.1016/j.enzmictec.2004.04.009.
[22] Luo DH, Zong MH, Xu JH. Biocatalytic synthesis of(-)-1-trimethylsilyl-ethanol by asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp AS2.2241 [J]. Journal of Molecular Catalysis B:Enzymatic, 2003(5):83-88.
[23] Howarth J, James P, Dai JF. Immobilized baker′s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix [J]. Tetrahedron Letters, 2001, (42):7517-7519.doi:10.1016/S0040-4039(01)01601-X.
[24] Cull SG, Holbrey JD, Vargas MV. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations [J]. Biotechnology and Bioengineering, 2000(2):227-233.doi:10.1002/(SICI)1097-0290(20000720)69:2<227::AID-BIT12>3.0.CO;2-0.
[25] Pfruender H, Amidjojo M, Kragl U. Efficient whole-cell biotransformation in a biphasic ionic liquid/water system [J]. Angewandte Chemie International Edition, 2004, (34):4529-4531.
[26] Roberts NJ, Lye GJ. Application of room-temperature ionic liquids in biocatalysis:opportunities and challenges [J]. ACS Symposium Series, 2002.347-359.doi:10.1021/bk-2002-0818.ch027.
[27] Lozano P, de Diego T, Guegan JP. Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions [J]. Biotechnology and Bioengineering, 2001(5):563-569.

相似文献/References:

[1]孟晨璐,张梁,丁重阳,等.构建羰基还原酶基因工程菌生物转化产l-麻黄碱[J].生物加工过程,2009,7(01):29.[doi:006]
 MENG Chen-lu,ZHANG Liang,DING Chong-yang,et al.Construction and application of carbonyl reductase gene engineering strain in biosynthesis of l-ephedrine[J].Chinese Journal of Bioprocess Engineering,2009,7(03):29.[doi:006]
[2]肖美添,张亚武,黄雅燕,等.重组基因工程菌在不对称还原羰基化合物中的应用[J].生物加工过程,2009,7(03):1.
 XIAO Mei-tian,ZHANG Ya-wu,HUANG Ya-yan,et al.Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds[J].Chinese Journal of Bioprocess Engineering,2009,7(03):1.
[3]孙鹏,张文,倪晔,等.羰基还原酶产生菌 SW 2026的产酶条件及其不对称催化还原4′-氯苯乙酮[J].生物加工过程,2009,7(05):19.
 SUN Peng,ZHANG Wen,NI Ye,et al.Enhancement of asymmetric reduction of 4′-chloroacetophenone by optimizing culture conditions of carbonyl reductase-producing strain Candida krusei SW 2026 [J].Chinese Journal of Bioprocess Engineering,2009,7(03):19.
[4]王翔,穆晓清,徐岩,等.葡萄酒酵母不对称还原苯甲酰甲酸合成(R)-扁桃酸[J].生物加工过程,2009,7(05):34.
 WANG Xiang,MU Xiao-qing,XU Yan,et al.Asymmetric reduction of benzoylformic acid into (R)-mendelic acid by whole cell Saccharomyces ellipsoideus catalysis[J].Chinese Journal of Bioprocess Engineering,2009,7(03):34.
[5]杨忠华,王玉,曾嵘,等.利用微生物重组技术促进羰基不对称还原研究进展[J].生物加工过程,2009,7(06):8.
 YANG Zhong-hua,WANG Yu,ZENG Rong,et al.Recent progress of asymmetric reduction of ketones with microbial recombinant technology[J].Chinese Journal of Bioprocess Engineering,2009,7(03):8.
[6]欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(02):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
 OU Ling,XIE Yan,XU Jianhe.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(03):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
[7]张蓓花,倪晔,孙志浩.羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇[J].生物加工过程,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
 ZHANG Beihua,NI Ye,SUN Zhihao.Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis[J].Chinese Journal of Bioprocess Engineering,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
[8]张海灵,高秀珍,陈曦,等.米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析[J].生物加工过程,2013,11(01):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
 ZHANG Hailing,GAO Xiuzhen,CHEN Xi,et al.Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40[J].Chinese Journal of Bioprocess Engineering,2013,11(03):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
[9]郁惠蕾,黄磊,倪燕,等.羰基生物还原法合成手性醇的研究进展[J].生物加工过程,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
 YU Huilei,HUANG Lei,NI Yan,et al.Advances in synthesis of chiral alcohols by carbonyl bioreduction[J].Chinese Journal of Bioprocess Engineering,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
[10]黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(02):52.[doi:10.3969/j.issn.1672-3678.2004.02.010]

备注/Memo

备注/Memo:
基金项目:中国科学院资助项目,重庆市应用基础研究基金
更新日期/Last Update: 1900-01-01