|本期目录/Table of Contents|

[1]邢新会,张翀.发酵生物制氢研究进展[J].生物加工过程,2005,3(01):1-8.[doi:10.3969/j.issn.1672-3678.2005.01.002]
 XING Xin-hui,ZHANG Chong.Research progress in dark microbial fermentation for bio-hydrogen production[J].Chinese Journal of Bioprocess Engineering,2005,3(01):1-8.[doi:10.3969/j.issn.1672-3678.2005.01.002]
点击复制

发酵生物制氢研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
3
期数:
2005年01期
页码:
1-8
栏目:
出版日期:
2005-02-28

文章信息/Info

Title:
Research progress in dark microbial fermentation for bio-hydrogen production
作者:
邢新会张翀
清华大学, 化学工程系生物化工研究所, 北京, 100084
Author(s):
XING Xin-hui ZHANG Chong
关键词:
生物制氢暗发酵菌种氢酶反应器
分类号:
TQ116.29
DOI:
10.3969/j.issn.1672-3678.2005.01.002
摘要:
综述了近年来发酵生物制氢领域的研究进展.在菌种方面,除了对现有产氢菌种的深入研究外,还采用生物学,分子生物学及生物信息学手段建立产氢菌种库;在氢酶的研究方面,已逐步从基因确定、功能研究拓展到基因工程构建高效产氢菌研究;而在与废弃生物质处理相结合的反应过程方面,研究主要集中在利用不同种类的废弃物的产氢和高效产氢反应器上.此外,还初步总结了目前对发酵制氢可行性和经济性的评价,并对其发展方向提出了新的看法.

参考文献/References:

[1] Kumar N, Das D. Production and purification of alpha-amylase from hydrogen producing IIT-BT 08 [J]. Bioprocess Engineering, 2000.205-208.doi:10.1007/PL00009123.
[2] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08 [J]. Process Biochemistry, 2000.589-593.doi:10.1016/S0032-9592(99)00109-0.
[3] Yokoi H, Ohkawara T, Hirose J. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39 [J]. Journal of Fermentation and Bioengineering, 1995.571-574.doi:10.1016/0922-338X(96)87733-6.
[4] Tanisho S, Ishiwata Y. Continuous Hydrogen-Production from Molasses by the Bacterium Enterobacter aerogenes [J]. International Journal of Hydrogen Energy, 1994.807-812.doi:10.1016/0360-3199(94)90197-X.
[5] Taguchi F, Yamada K, Hasegawa K. Continuous hydrogen production by Clostridium sp strain no 2 from cellulose hydrolysate in an aqueous two-phase system [J]. Journal of Fermentation and Bioengineering, 1996.80-83.doi:10.1016/0922-338X(96)89460-8.
[6] Taguchi F, Mizukami N, Yamada K. Direct Conversion of Cellulosic Materials to Hydrogen by Clostridium Sp Strain No-2 [J]. Enzyme and Microbial Technology, 1995.147-150.doi:10.1016/0141-0229(94)00058-Y.
[7] Taguchi F, Mizukami N, Taki TS. Hydrogen-Production from Continuous Fermentation of Xylose During Growth of Clostridium Sp Strain No-2 [J]. Canadian Journal of Microbiology, 1995.536-540.doi:10.1139/m95-071.
[8] Evvyernie D, Yamazaki S, Morimoto K. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium [J]. Journal of Bioscience and Bioengineering, 2000, (6):596-601.doi:10.1016/S1389-1723(00)80063-8.
[9] Li HZ, Morimoto K, Kimura T. A new type of beta-N-acetylglucosaminidase from hydrogen-producing Clostridium paraputrificum M-21 [J]. Journal of Bioscience and Bioengineering, 2003.268-274.
[10] Yokoi H, Maeda Y, Hirose J. H-2 production by immobilized cells of Clostridium butyricum on porous glass beads [J]. Biotechnology Techniques, 1997.431-433.doi:10.1023/A:1018429109020.
[11] Ueno Y, Haruta S, Ishii M. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora [J]. Journal of Bioscience and Bioengineering, 2001, (4):397-400.doi:10.1263/jbb.92.397.
[12] Oh YK, Seol EH, Kim JR. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobactersp Y19 [J]. International Journal of Hydrogen Energy, 2003, (12):1353-1359.doi:10.1016/S0360-3199(03)00024-7.
[13] Oh YK, Park MS, Seol EH. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor [J]. Biotechnology and Bioprocess Engineering, 2003.54-57.doi:10.1007/BF02932899.
[14] Fang HHP, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge [J]. Applied Microbiology and Biotechnology, 2002.112-118.doi:10.1007/s00253-001-0865-8.
[15] Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis [J]. International Journal of Hydrogen Energy, 2004, (13):1355-1363.doi:10.1016/j.ijhydene.2003.09.011.
[16] van Niel EWJ, Claassen PAM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus [J]. Biotechnology and Bioengineering, 2003.255-262.doi:10.1002/bit.10463.
[17] van Niel EWJ, Budde MAW, de Haas GG. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii [J]. International Journal of Hydrogen Energy, 2002, (11/12):1391-1398.doi:10.1016/S0360-3199(02)00115-5.
[18] Vrije T, De Haas GG, Tan GB. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii [J]. International Journal of Hydrogen Energy, 2002, (11/12):1381-1390.doi:10.1016/S0360-3199(02)00124-6.
[19] Kadar Z, De Vrijek T, van Noorden GE. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus [J]. Applied Biochemistry and Biotechnology, 2004.497-508.
[20] Kadar Z, De Vrije T, Budde MAW. ydrogen production from paper sludge hydrolysate [J]. Applied Biochemistry and Biotechnology, 2003.557-566.
[21] Kalia VC, Lal S, Ghai R. Mining genomic databases to identify novel hydrogen producers [J]. Trends in Biotechnology, 2003.152-156.doi:10.1016/S0167-7799(03)00028-3.
[22] Paulette MV, Bernard B, Jacques M. Classification and phylogeny of hydrogenases [J]. FEMS Microbiology Reviews, 2001.455-501.
[23] Andrews SC, Berks BC, Mcclay J. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system [J]. Microbiology, 1997, (part 11):3633-3647.doi:10.1099/00221287-143-11-3633.
[24] Yasuo AD, Yoji Koike, Jorg Schnackenberg. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942 [J]. Biochimica Et Biophysica Acta, 2000.269-278.
[25] Mishra J, Kumar N, Ghosh AK. Isolation and molecular characterization of hydrogenase gene from a high rate of hydrogen-producing bacterial strain Enterobacter cloacae IIT-BT 08 [J]. International Journal of Hydrogen Energy, 2002, (11/12):1475-1479.doi:10.1016/S0360-3199(02)00126-X.
[26] Mishra J, Khurana S, Kumar N. Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08 [J]. Biochemical and Biophysical Research Communications, 2004, (2):679-685.doi:10.1016/j.bbrc.2004.09.108.
[27] Nakashimada Y, Rachman MA, Kakizono T. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states [J]. International Journal of Hydrogen Energy, 2002, (11/12):1399-1405.doi:10.1016/S0360-3199(02)00128-3.
[28] Zhang T, Liu H, Fang H H P. Biohydrogen production from starch in wastewater under thermophilic condition [J]. Journal of Environmental Management, 2003, (2):149-156.doi:10.1016/S0301-4797(03)00141-5.
[29] Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose [J]. Biotechnology and Bioengineering, 2001.280-287.
[30] Ueno Y, Kawai T, Sato S. Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora [J]. Journal of Fermentation and Bioengineering, 1995.395-397.doi:10.1016/0922-338X(95)94005-C.
[31] Noike T, Mizuno O. Hydrogen fermentation of organic municipal wastes [J]. Water Science and Technology, 2000.155-162.
[32] Lay JJ, Fan KS, Chang J. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge [J]. International Journal of Hydrogen Energy, 2003, (12):1361-1367.doi:10.1016/S0360-3199(03)00027-2.
[33] Wang CC, Chang CW, Chu CP. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation [J]. Water Research, 2003, (11):2789-2793.doi:10.1016/S0043-1354(03)00004-6.
[34] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste [J]. Water Research, 1999, (11):2579-2586.doi:10.1016/S0043-1354(98)00483-7.
[35] 李建政, 任南琪, 林明. 有机废水发酵法生物制氢中试研究 [J]. 太阳能学报, 2002, (2):252-256.doi:10.3321/j.issn:0254-0096.2002.02.025.
[36] Fang H H P, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture [J]. Bioresource Technology, 2002.87-93.
[37] Van GinkelS, Sung SW, Lay JJ. Biohydrogen production as a function of pH and substrate concentration [J]. Environmental Science and Technology, 2001, (24):4726-4730.doi:10.1021/es001979r.
[38] Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process [J]. Applied Microbiology and Biotechnology, 2002.224-228.doi:10.1007/s002530100814.
[39] Logan BE, Oh SE, Kim IS. Biological hydrogen production measured in batch anaerobic respirometers [J]. Environmental Science and Technology, 2002, (11):2530-2535.doi:10.1021/es015783i.
[40] Mizuno O, Dinsdale R, Hawkes FR. Enhancement of hydrogen production from glucose by nitrogen gas sparging [J]. BIORESOURCE TECHNOLOGY, 2000.59-65.
[41] Lin CY, Lay CH. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora [J]. International Journal of Hydrogen Energy, 2004, (1):41-45.doi:10.1016/S0360-3199(03)00083-1.
[42] Lin CY, Chang RC. Fermentative hydrogen production at ambient temperature [J]. International Journal of Hydrogen Energy, 2004, (7):715-720.doi:10.1016/j.ijhydene.2003.09.002.
[43] Monmoto M, Atsuka M, Atif AAY. Biological production of hydrogen from glucose by natural anaerobic microflora [J]. International Journal of Hydrogen Energy, 2004, (7):709-713.doi:10.1016/j.ijhydene.2003.09.009.
[44] Ueno Y, Otsuka S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture [J]. Journal of Fermentation and Bioengineering, 1996.194-197.doi:10.1016/0922-338X(96)85050-1.
[45] Lay JJ. 3.0.CO;2-T.aspx">Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering, 2000.269-278.doi:10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T.
[46] Chen CC, Lin CY. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor [J]. Advances in Environmental Research, 2003.695-699.doi:10.1016/S1093-0191(02)00035-7.
[47] Fang HHP, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge [J]. Biotechnology and Bioengineering, 2002.44-52.
[48] Chang FY, Lin CY. Biohydrogen production using an up-flow anaerobic sludge blanket reactor [J]. International Journal of Hydrogen Energy, 2004, (1):33-39.doi:10.1016/S0360-3199(03)00082-X.
[49] Lee KS, Wu JF, Lo YS. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor [J]. Biotechnology and Bioengineering, 2004.648-657.doi:10.1002/bit.20174.
[50] Wu SY, Lin CN, Chang JS. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors [J]. Biotechnology Progress, 2003.828-832.
[51] Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors [J]. International Journal of Hydrogen Energy, 2002.1167-1174.doi:10.1016/S0360-3199(02)00130-1.
[52] Wu SY, Lin CN, Chang JS. Microbial hydrogen production with immobilized sewage sludge [J]. Biotechnology Progress, 2002.921-926.
[53] Lee KS, Lo YS, Lo YC. H-2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors [J]. Biotechnology Letters, 2003, (2):133-138.doi:10.1023/A:1021915318179.
[54] H Yokoi, R Maki, J Hirose. Microbial production of hydrogen from starch-manufacturing wastes [J]. Biomass and Bioenergy, 2002, (5):389-395.doi:10.1016/S0961-9534(02)00014-4.
[55] M A Rachman, Y Nakashimada, T Kakizono. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor [J]. Applied Microbiology and Biotechnology, 1998, (4):450-454.doi:10.1007/s002530051197.
[56] Levin DB, Pitt L, Love M. Biohydrogen production:prospects and limitations to practical application [J]. International Journal of Hydrogen Energy, 2004, (2):173-185.doi:10.1016/S0360-3199(03)00094-6.
[57] Classen PAM, van Groenestijn JW, Janssen AJH. Feasibility of biological hydrogen production from biomass for utilization in fuel cells [A]. Sevilla Spain, 2000.
[58] Reith JH, Wijffels RH, Barten H. Biomethane and biohydrogen-status and perspective of biological methane and hydrogen production.Dutch biological hydrogen foundation [J]. The Nethere lands, 2003.118-125.
[59] Benemann JR. Hydrogen production by microalgae [J]. Journal of Applied Psychology, 2000.291-300.
[60] Haruhiko Yokoi, Tadafumi Tokushige, Jun Hirose. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes [J]. Biotechnology Letters, 1998, (2):143-147.doi:10.1023/A:1005372323248.
[61] Jonathan Woodward, Mark Orr, Kimberley Cordray. Enzymatic production of biohydrogen [J]. Nature, 2000.1014-1015.doi:10.1038/35016633.
[62] Tanisho S, Ishiwata Y, Takahashi K. Hydrogen production by fermentation and a trial for improment on the yield of hydrogen, Hydrogen energy Progress IX [A]. 1992.583-590.
[63] Tanisho S, inBioHydrogen, O R Zaborsky. Hydrogen production by Facultative Anaerobe Enterobacter aerogenesPlenum press [M]. 1998.273-279.
[64] Lindblad P, Christensson K, Lindberg P. Photoproduction of H2 by wildtype Anabaena PCC 1720 and a hydrogen uptake deficient mutant:from laboratory to outdoor culture [J]. International Journal of Hydrogen Energy, 2002, (11/12):1271-1281.doi:10.1016/S0360-3199(02)00111-8.
[65] Horvath R, Orosz T, Balint B. Application of gas separation to recover biohydrogen produced by Thiocapsa roseopersicina [J]. DESALINATION, 2004, (1/3):261-265.doi:10.1016/S0011-9164(04)90198-1.
[66] Liang TM, Cheng SS, Wu KL. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane [J]. International Journal of Hydrogen Energy, 2002.1157-1165.doi:10.1016/S0360-3199(02)00099-X.
[67] Teplyakov VV, Gassanova LG, Sostina EG. Lab-scale bioreactor integration with active membrane system for hydrogen production:experience and prospects [J]. International Journal of Hydrogen Energy, 2002.1149-1155.doi:10.1016/S0360-3199(02)00093-9.

相似文献/References:

[1]卢元,张翀,邢新会.Clostridium paraputrificum M-21发酵制氢培养条件研究[J].生物加工过程,2004,2(02):41.[doi:10.3969/j.issn.1672-3678.2004.02.008]
[2]吴薛明,何冰芳.高浓度有机质驯化活性污泥对比产生氢率的影响[J].生物加工过程,2005,3(02):31.[doi:10.3969/j.issn.1672-3678.2005.02.007]
 WU Xue-ming,HE Bing-fang.Batch acclimation of efficiency activated sludge for high concentration medium and its progress in sucrose consumption and hydrogen yield[J].Chinese Journal of Bioprocess Engineering,2005,3(01):31.[doi:10.3969/j.issn.1672-3678.2005.02.007]
[3]王昶,贾士儒,贾庆竹,等.光合菌生物制氢技术[J].生物加工过程,2005,3(04):9.[doi:10.3969/j.issn.1672-3678.2005.04.002]
 WANG Chang,JIA Shi-ru,JIA Qing-zhu,et al.Technology of hydrogen production by photosynthetic bacteria[J].Chinese Journal of Bioprocess Engineering,2005,3(01):9.[doi:10.3969/j.issn.1672-3678.2005.04.002]
[4]刘颖,王爱杰,邓娴,等.联合生物制氢方法及发展趋势[J].生物加工过程,2007,5(03):6.[doi:10.3969/j.issn.1672-3678.2007.03.002]
 LIU Ying,WANG Ai-jie,DENG Xian,et al.Development of integrated biological hydrogen production technology and its trends[J].Chinese Journal of Bioprocess Engineering,2007,5(01):6.[doi:10.3969/j.issn.1672-3678.2007.03.002]

备注/Memo

备注/Memo:
基金项目:国家重点基础研究发展计划(973计划)
更新日期/Last Update: 1900-01-01