|本期目录/Table of Contents|

[1]陈海欣,张赛男,赵力民,等.固定化酶:从策略到材料设计[J].生物加工过程,2020,18(01):87-94.[doi:10.3969/j.issn.1672-3678.2020.01.011]
 CHEN Haixin,ZHANG Sainan,ZHAO Limin,et al.Enzyme immobilization:from strategies to materials design[J].Chinese Journal of Bioprocess Engineering,2020,18(01):87-94.[doi:10.3969/j.issn.1672-3678.2020.01.011]
点击复制

固定化酶:从策略到材料设计()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
87-94
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Enzyme immobilization:from strategies to materials design
文章编号:
1672-3678(2020)01-0087-08
作者:
陈海欣12张赛男3赵力民12陈瑶34
1.广东药科大学 医药化工学院,广东 广州 510000; 2.广东省化妆品工程技术研究中心,广东 广州 510000; 3.南开大学 药物化学生物学国家重点实验室,天津 300071; 4.南开大学 药学院,天津 300071
Author(s):
CHEN Haixin12ZHANG Sainan3ZHAO Limin12CHEN Yao34
1.School of Chemistry and Chemical Engineering,Guangdong Pharmaceutical University,Guangzhou 510000,China; 2.Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510000,China; 3.State Key Laboratory of Medicinal Chemical Biology,Nankai University,Tianjin 300071,China; 4.College of Pharmacy,Nankai University,Tianjin 300071,China
关键词:
酶固定化 固定方法 多孔材料 MOFs COFs
分类号:
Q814
DOI:
10.3969/j.issn.1672-3678.2020.01.011
文献标志码:
A
摘要:
酶是一种高效、高选择性、催化条件温和的绿色催化剂,在生物催化、生物传感、生物分离等领域具有广泛的应用价值。然而,游离酶的操作稳定性差、回收和再利用困难等缺点限制了其进一步应用。固定化酶技术应运而生,它的出现和发展为解决酶的工业化应用提供了优良的解决方案。本文中,笔者主要从酶的固定化方法、固定化酶的载体和固定化酶的应用这三方面详细介绍近几年固定化酶的研究现状,结合笔者所在课题组和国内外同行近年来的最新研究进展,重点总结了具有结构可调、孔隙率高、结晶度良好的金属-有机框架材料(MOFs)和共价有机框架材料(COFs)作为新型载体在固定化酶方面的研究进展。

参考文献/References:

[1] POLLARD D J,WOODLEY J M.Biocatalysis for pharmaceutical intermediates:the future is now[J].Trends Biotechnol,2007,25(2):66-73.
[2] SHELDON R A,VAN PELT S.Enzyme immobilisation in biocatalysis:why,what and how[J].Chem Soc Rev,2013,42(15):6223-6235.
[3] TOSA T,MORI T,FUSE N,et al.Studies on continuous enzyme reactions:I.screening of carriers for preparation of water-insoluble aminoacylase[J].Enzymologia,1966,31(4):214.
[4] ZHOU Z,HARTMANN M.Progress in enzyme immobilization in ordered mesoporous materials and related applications[J].Chem Soc Rev,2013,42(9):3894-3912.
[5] NELSON J M,GRIFFIN E G.Adsorption of invertase[J].J Am Chem Soc,1916,38(5):1109-1115.
[6] LIAN X,FANG Y,JOSEPH E,et al.Enzyme-MOF(metal-organic framework)composites[J].Chem Soc Rev,2017,46(11):3386-3401.
[7] SONG Y,SUN Q,AGUILA B,et al.Opportunities of covalent organic frameworks for advanced applications[J].Adv Sci,2019,6(2):1801410.
[8] LYU F,ZHANG Y,ZARE R N,et al.One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J].Nano Lett,2014,14(10):5761-5765.
[9] SHIEH F K,WANG S C,YEN C I,et al.Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach:size-selective sheltering of catalase in metal-organic framework microcrystals[J].J Am Chem Soc,2015,137(13):4276-4279.
[10] HE H,HAN H,SHI H,et al.Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization:a biocatalyst for ester hydrolysis and kinetic resolution[J].ACS Appl Mater Interfaces,2016,8(37):24517-24524.
[11] CUI J,FENG Y,LIN T,et al.Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization[J].ACS Appl Mater Interfaces,2017,9(12):10587-10594.
[12] WANG X,MAKAL T A,Zhou H C.Protein immobilization in metal-organic frameworks by covalent binding[J].Aus J Chem,2014,67(11):1629-1631.
[13] LAMMENS T M,DE BIASE D,FRANSSEN M C R,et al.The application of glutamic acid α-decarboxylase for the valorization of glutamic acid[J].Green Chem,2009,11(10):1562-1567.
[14] SCHOEVAART R,WOLBERS M W,GOLUBOVIC M,et al.Preparation,optimization,and structures of cross-linked enzyme aggregates(CLEAs)[J].Biotechnol Bioeng,2004,87(6):754-762.
[15] CAO L.Carrier-bound immobilized enzymes:principles,application and design[M].New York:John Wiley & Sons,2006.
[16] HARTMANN M,JUNG D.Biocatalysis with enzymes immobilized on mesoporous hosts:the status quo and future trends[J].J Mater Chem,2010,20(5):844-857.
[17] HARTMANN M,KOSTROV X.Immobilization of enzymes on porous silicas:benefits and challenges[J].Chem Soc Rev,2013,42(15):6277-6289.
[18] MATEO C,PALOMO J M,FERNANDEZ LORENTE G,et al.Improvement of enzyme activity,stability and selectivity via immobilization techniques[J].Enzyme Microb Technol,2007,40(6):1451-1463.
[19] LIU B,HU R,DENG J.Characterization of immobilization of an enzyme in a modified Y zeolite matrix and its application to an amperometric glucose biosensor[J].Anal Chem,1997,69(13):2343-2348.
[20] DEERE J,MAGNER E,Wall J G,et al.Mechanistic and structural features of protein adsorption onto mesoporous silicates[J].J Phys Chem B,2002,106(29):7340-7347.
[21] RAMANI K,KARTHIKEYAN S,BOOPATHY R,et al.Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil:isotherm and kinetic studies[J].Process Biochem,2012,47(3):435-445.
[22] KHAN A A,AKHTAR S,HUSAIN Q.Direct immobilization of polyphenol oxidases on Celite 545 from ammonium sulphate fractionated proteins of potato(Solanum tuberosum)[J].J Mol Catal B:Enzymatic,2006,40(1/2):58-63.
[23] SIRISHA V L,JAIN A,JAIN A.Enzyme immobilization:an overview on methods,support material,and applications of immobilized enzymes[M].Adv Food Nutrition Res,2016,79:179-211.
[24] DIAZ J F,BALKUS JR K J.Enzyme immobilization in MCM-41 molecular sieve[J].J Mol Catal B:Enzymatic,1996,2(2/3):115-126.
[25] SHENG W,XI Y,ZHANG L,et al.Enhanced activity and stability of papain by covalent immobilization on porous magnetic nanoparticles[J].Int J Biol Macromol,2018,114:143-148.
[26] KHAN M,HUSAIN Q,BUSHRA R.Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor[J].Int J Biol Macromol,2017,105:693-701.
[27] F?REY G.Hybrid porous solids:past,present,future[J].Chem Soc Rev,2008,37(1):191-214.
[28] FURUKAWA H,CORDOVA K E,O’KEEFFE M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341:1230444.
[29] XU H,LIU X F,CAO C S,et al.A porous metal-organic framework assembled by[Cu30] nanocages:serving as recyclable catalysts for CO2 fixation with aziridines[J].Adv Sci,2016,3(11):1600048.
[30] LI B,WEN H M,CUI Y,et al.Emerging multifunctional metal-organic framework materials[J].Adv Mater,2016,28(40):8819-8860.
[31] MEHTA J,BHARDWAJ N,BHARDWAJ S K,et al.Recent advances in enzyme immobilization techniques:metal-organic frameworks as novel substrates[J].Coord Chem Rev,2016,322:30-40.
[32] AN H,LI M,GAO J,et al.Incorporation of biomolecules in metal-organic frameworks for advanced applications[J].Coord Chem Rev,2019,384:90-106.
[33] LYKOURINOU V,CHEN Y,WANG X S,et al.Immobilization of MP-11 into a mesoporous metal-organic framework,MP-11@mesoMOF:a new platform for enzymatic catalysis[J].J Am Chem Soc,2011,133(27):10382-10385.
[34] CHEN Y,LYKOURINOU V,VETROMILE C,et al.How can proteins enter the interior of a MOF:investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J].J Am Chem Soc,2012,134(32):13188-13191.
[35] CHEN Y,HAN S,LI X,et al.Why does enzyme not leach from metal-organic frameworks(MOFs):unveiling the interactions between an enzyme molecule and a MOF[J].Inorg Chem,2014,53(19):10006-10008.
[36] FENG D,LIU T F,SU J,et al.Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation[J].Nat Commun,2015,6:5979.
[37] LIAN X,CHEN Y P,LIU T F,et al.Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF[J].Chem Sci,2016,7(12):6969-6973.
[38] WANG X,ZHU K X,ZHOU H M.Immobilization of glucose oxidase in alginate-chitosan microcapsules[J].Int J Mol Sci,2011,12(5):3042-3054.
[39] YANG X,WANG Y,BAI R,et al.Pickering emulsion-enhanced interfacial biocatalysis:tailored alginate microparticles act as particulate emulsifier and enzyme carrier[J].Green Chem,2019,21(9):2229-2233.
[40] FENG X,DING X,JIANG D.Covalent organic frameworks[J].Chem Soc Rev,2012,41(18):6010-6022.
[41] DING S,WANG W,DING S,et al.Covalent organic frameworks(COFs):from design to applications[J].Chem Soc Rev,2013,42(2):548-568.
[42] C?T? A P,BENIN A I,OCKWIG N W,et al.Porous,crystalline,covalent organic frameworks[J].Science,2005,310:1166-1170.
[43] WANG H,ZENG Z,XU P,et al.Recent progress in covalent organic framework thin films:fabrications,applications and perspectives[J].Chem Soc Rev,2019,48(2):488-516.
[44] KANDAMBETH S,VENKATESH V,SHINDE D B,et al.Self-templated chemically stable hollow spherical covalent organic framework[J].Nat Commun,2015,6:6786.
[45] SUN Q,FU C W,AGUILA B,et al.Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks[J].J Am Chem Soc,2018,140(3):984-992.
[46] ZHANG S,ZHENG Y,AN H,et al.Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation[J].Angew Chem Int Ed,2018,57(51):16754-16759.
[47] MAJEWSKI M B,HOWARTH A J,LI P,et al.Enzyme encapsulation in metal-organic frameworks for applications in catalysis[J].Cryst Eng Commun,2017,19(29):4082-4091.
[48] RAFIEI S,TANGESTANINEJAD S,HORCAJADA P,et al.Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor[J].Chem Eng J,2018,334:1233-1241.
[49] HU Y,DAI L,LIU D,et al.Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase[J].Green Chem,2018,20(19):4500-4506.
[50] GRIESHABER D,MACKENZIE R,VS?R?S J,et al.Electrochemical biosensors-sensor principles and architectures[J].Sensors,2008,8(3):1400-1458.
[51] CLARK JR L C,LYONS C.Electrode systems for continuous monitoring in cardiovascular surgery[J].Ann New York Acad Sci,1962,102(1):29-45.
[52] PATRA S,CRESPO T H,PERMYAKOVA A,et al.Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform[J].J Mater Chem B,2015,3(46):8983-8992.
[53] REN Z,LUO J,WAN Y.Highly permeable biocatalytic membrane prepared by 3D modification:metal-organic frameworks ameliorate its stability for micropollutants removal[J].Chem Eng J,2018,348:389-398.

相似文献/References:

[1]张宪锋,郑裕国.酶法拆分手性化合物HPBE[J].生物加工过程,2003,1(02):34.[doi:10.3969/j.issn.1672-3678.2003.02.008]

备注/Memo

备注/Memo:
收稿日期:2019-08-31修回日期:2019-12-06
基金项目:国家自然科学基金面上项目(21871153); 天津市自然科学基金重点项目(18JCZDJC37300); 广东省省市共建重点学科建设专项资金
作者简介:陈海欣(1995—),女,广东江门人,硕士研究生,研究方向:酶的固定化; 赵力民(联系人),副教授,硕士生导师,E-mail:zhaolimin@gdpu.edu.cn; 陈瑶(联系人),特聘研究员,博士生导师,E-mail:chenyao@nankai.edu.cn
引用格式:陈海欣,张赛男,赵力民,等.固定化酶:从策略到材料设计[J].生物加工过程,2020,18(1):87-94.
CHEN Haixin,ZHANG Sainan,ZHAO Limin,et al.Enzyme immobilization:from strategies to materials design[J].Chin J Bioprocess Eng,2020,18(1):87-94..
更新日期/Last Update: 2019-01-30