|本期目录/Table of Contents|

[1]吴瑕,龚国利,查健.基于细菌裂解酶的功能性生物材料及其应用[J].生物加工过程,2020,18(01):80-86.[doi:10.3969/j.issn.1672-3678.2020.01.010]
 WU Xia,GONG Guoli,ZHA Jian.Bacteriolytic enzyme-based functional biomaterials and their applications[J].Chinese Journal of Bioprocess Engineering,2020,18(01):80-86.[doi:10.3969/j.issn.1672-3678.2020.01.010]
点击复制

基于细菌裂解酶的功能性生物材料及其应用()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
80-86
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Bacteriolytic enzyme-based functional biomaterials and their applications
文章编号:
1672-3678(2020)01-0080-07
作者:
吴瑕龚国利查健
陕西科技大学 食品与生物工程学院,陕西 西安 710021
Author(s):
WU XiaGONG GuoliZHA Jian
School of Food and Biological Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China
关键词:
细菌裂解酶 特异性 底物结合域 生物材料 功能材料 检测 耐药菌
分类号:
TQ925;TB34
DOI:
10.3969/j.issn.1672-3678.2020.01.010
文献标志码:
A
摘要:
抗生素的广泛使用引起了耐药细菌的大量出现和传播,严重危害公共健康。细菌裂解酶作为一类天然存在的细菌细胞壁水解酶,对普通细菌及其耐药菌株具有高效、高特异性(选择性)的抗菌性能,被视为抗生素的一种潜在替代品。将细菌裂解酶的底物识别特异性或者选择性杀菌特性与某些材料结合,通过酶固定化的方法,可形成具有特定功能的生物材料,以选择性地识别或杀灭特定细菌。本文中,笔者综述基于细菌裂解酶的功能性生物材料的开发及其在食品、医药卫生等行业中的应用。

参考文献/References:

[1] WU X,KWON S J,KIM J,et al.Biocatalytic nanocomposites for combating bacterial pathogens[J].Annu Rev Chem Biomol Eng,2017,8(1):87-113.
[2] TRUDIL D.Phage lytic enzymes:a history[J].Virol Sin,2015,30(1):26-32.
[3] 杨航,余军平,危宏平.裂解酶治疗的研究进展与应用前景[J].微生物学通报,2015,42(1):178-184.
[4] LU T K,KOERIS M S.The next generation of bacteriophage therapy[J].Curr Opin Microbiol,2011,14(5):524-531.
[5] HERMOSO J A,GARCIA J L,GARCIA P.Taking aim on bacterial pathogens:from phage therapy to enzybiotics[J].Curr Opin Microbiol,2007,10(5):461-472.
[6] GERSTMANS H,CRIEL B,BRIERS Y.Synthetic biology of modular endolysins[J].Biotechnol Adv,2018,36(3):624-640.
[7] SCHMELCHER M,LOESSNER M J.Bacteriophage endolysins:applications for food safety[J].Curr Opin Biotechnol,2016,37:76-87.
[8] 顾敬敏,韩文瑜,路荣,等.治疗细菌性疾病的有力武器:噬菌体及其裂解酶[J].河北科技师范学院学报,2011,25(1):29-33.
[9] DESMARAIS S M,DE PEDRO M A,CAVA F,et al.Peptidoglycan at its peaks:how chromatographic analyses can reveal bacterial cell wall structure and assembly[J].Mol Microbiol,2013,89(1):1-13.
[10] RODRIGUEZ-RUBIO L,MARTINEZ B,DONOVAN D M,et al.Bacteriophage virion-associated peptidoglycan hydrolases:potential new enzybiotics[J].Crit Rev Microbiol,2013,39(4):427-434.
[11] RODRIGUEZ-RUBIO L,MARTINEZ B,RODRIGUEZ A,et al.Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase:fusions,deletions,and synergy with LysH5[J].Appl Environ Microbiol,2012,78(7):2241-2248.
[12] HERPERS B L,LEESON N.Endolysins:redefining antibacterial therapy[J].Future Microbiol,2015,10(3):309-311.
[13] NELSON D C,SCHMELCHER M,RODRIGUEZ-RUBIO L,et al.Endolysins as antimicrobials[J].Adv Virus Res,2012,83:299-365.
[14] VOLLMER W,JORIS B,CHARLIER P,et al.Bacterial peptidoglycan(murein)hydrolases[J].FEMS Microbiol Rev,2008,32(2):259-286.
[15] RILEY M A,WERTZ J E.Bacteriocins:evolution,ecology,and application[J].Annu Rev Microbiol,2002,56(1):117-137.
[16] DONOVAN D M,DONG S L,GARRETT W,et al.Peptidoglycan hydrolase fusions maintain their parental specificities[J].Appl Environ Microbiol,2006,72(4):2988-2996.
[17] XU J,YANG H,BI Y,et al.Activity of the chimeric lysin ClyR against common gram-positive oral microbes and its anticaries efficacy in rat models[J].Viruses,2018,10(7):380.
[18] LI W,YANG H,GONG Y,et al.Effects of a chimeric lysin against planktonic and sessile Enterococcus faecalis hint at potential application in endodontic therapy[J].Viruses,2018,10(6):290.
[19] FILATOVA L Y,DONOVAN D M,ISHNAZAROVA N T,et al.A chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus cells:a study of both kinetics of inactivation and specifics of interaction with anionic polymers[J].Appl Biochem Biotechnol,2016,180(3):544-557.
[20] DIEZ-MARTINEZ R,DE PAZ H D,GARCIA-FERNANDEZ E,et al.A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae[J].J Antimicrob Chemother,2015,70(6):1763-1773.
[21] MOHAMAD N R,MARZUKI N H C,BUANG N A,et al.An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J].Biotechnol Biotechnol Equip,2015,29(2):205-220.
[22] AHMAD R,SARDAR M.Enzyme immobilization:an overview on nanoparticles as immobilization matrix[J].Biochem Anal Biochem,2015,4:178.
[23] SINGH R K,TIWARI M K,SINGH R,et al.From protein engineering to immobilization:promising strategies for the upgrade of industrial enzymes[J].Int J Mol Sci,2013,14(1):1232-1277.
[24] CLOUTIER M,MANTOVANI D,ROSEI F.Antibacterial coatings:challenges,perspectives,and opportunities[J].Trends Biotechnol,2015,33(11):637-652.
[25] HATHAWAY H,AJUEBOR J,STEPHENS L,et al.Thermally triggered release of the bacteriophage endolysin CHAP(K)and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus(MRSA)[J].J Control Release,2017,245:108-115.
[26] ZDARTA J,MEYER A S,JESIONOWSKI T,et al.A general overview of support materials for enzyme immobilization:characteristics,properties,practical utility[J].Catalysts,2018,8(2):92.
[27] LIU Y,OGORZALEK T L,YANG P,et al.Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid-liquid interface[J].J Am Chem Soc,2013,135(34):12660-12669.
[28] BIGDELI S,TALASAZ A H,STAHL P,et al.Conformational flexibility of a model protein upon immobilization on self-assembled monolayers[J].Biotechnol Bioeng,2008,100(1):19-27.
[29] CAPARCO A A,BOMMARIUS A S,CHAMPION J A.Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper-enzyme fusion proteins[J].AIChE J,2018,64:2934-2946.
[30] KURINOMARU T,KOJIMA N,KURITA R.An alkylating immobilization linker for immunochemical epigenetic assessment[J].Chem Commun,2017,53(59):8308-8311.
[31] PANGULE R C,BROOKS S J,DINU C Z,et al.Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates[J].ACS Nano,2010,4(7):3993-4000.
[32] OSHIGE M,YUMOTO K,MIYATA H,et al.Immobilization of His-tagged proteins on various solid surfaces using NTA-modified chitosan[J].Open J Polym Chem,2013,3(1):6-10.
[33] CARE A,PETROLL K,GIBSON E S Y,et al.Solid-binding peptides for immobilization of thermostable enzymes to hydrolyze biomass polysaccharides[J].Biotechnol Biofuels,2017,10(1):29.
[34] IKEDA T,HATA Y,NINOMIYA K I,et al.Oriented immobilization of antibodies on a silicon wafer using Si-tagged protein A[J].Anal Biochem,2009,385(1):132-137.
[35] BOLIVAR J M,NIDETZKY B.Positively charged mini-protein Zbasic2 as a highly efficient silica binding module:opportunities for enzyme immobilization on unmodified silica supports[J].Langmuir,2012,28(26):10040-10049.
[36] GAEBLER A,SCHAEFER T,FISCHER K,et al.Peptide linkers for the immobilization of bioactive molecules on biphasic calcium phosphate via a modular immobilization system[J].Acta Biomater,2013,9(1):4899-4905.
[37] YEROSLAVSKY G,GIRSHEVITZ O,FOSTER-FREY J,et al.Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme[J].Langmuir,2015,31(3):1064-1073.
[38] WU X,FRASER K,ZHA J,et al.Flexible peptide linkers enhance the antimicrobial activity of surface-immobilized bacteriolytic enzymes[J].ACS Appl Mater Interfaces,2018,10(43):36746-36756.
[39] SOLANKI K,GROVER N,DOWNS P,et al.Enzyme-based listericidal nanocomposites[J].Sci Rep,2013,3:1584.
[40] RAZ A,SERRANO A,LAWSON C,et al.Lysibodies are IgG Fc fusions with lysin binding domains targeting Staphylococcus aureus wall carbohydrates for effective phagocytosis[J].Proc Natl Acad Sci USA,2017,114(18):4781-4786.
[41] SCHMELCHER M,SHABAROVA T,EUGSTER M R,et al.Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains[J].Appl Environ Microbiol,2010,76(17):5745-5756.
[42] KRETZER J W,LEHMANN R,SCHMELCHER M,et al.Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells[J].Appl Environ Microbiol,2007,73(6):1992-2000.
[43] WOLFFS P,NORLING B,R?DSTR?M P.Risk assessment of false-positive quantitative real-time PCR results in food,due to detection of DNA originating from dead cells[J].J Microbiol Methods,2005,60(3):315-323.
[44] KWON S J,KIM D,LEE I,et al.Sensitive multiplex detection of whole bacteria using self-assembled cell binding domain complexes[J].Anal Chim Acta,2018,1030:156-165.
[45] MIAO J,PANGULE R C,PASKALEVA E E,et al.Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications[J].Biomaterials,2011,32(36):9557-9567.
[46] BANERJEE I,PANGULE R C,KANE R S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Adv Mater,2011,23(6):690-718.
[47] SINGHA P,LOCKLIN J,HANDA H.A review of the recent advances in antimicrobial coatings for urinary catheters[J].Acta Biomater,2017,50:20-40.
[48] LIPOVSKY A,THALLINGER B,PERELSHTEIN I,et al.Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes[J].J Mater Chem B,2015,3(35):7014-7019.
[49] NILEBACK L,WIDHE M,SEIJSING J,et al.Bioactive silk coatings reduce the adhesion of Staphylococcus aureus while supporting growth of osteoblast-like cells[J].ACS Appl Mater Interfaces,2019,11(28):24999-25007.
[50] SATISHKUMAR R,SANKAR S,YURKO Y,et al.Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes[J].Antimicrob Agents Chemother,2011,55(9):4379-4385.
[51] KIM D,KWON S J,WU X,et al.Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-cell wall binding domain(CBD)conjugates[J].ACS Appl Mater Interfaces,2018,10(16):13317-13324.
[52] WU X,KWON S J,KIM D,et al.Unprotonated short chain alkylamines inhibit staphylolytic activity of lysostaphin in a wall teichoic acid-dependent manner[J].Appl Environ Microbiol,2018,84(14):e00693-00618.

备注/Memo

备注/Memo:
收稿日期:2019-09-09修回日期:2019-12-02
基金项目:国家自然科学基金(31900114); 陕西科技大学“青年拔尖人才”科研启动项目
作者简介:吴瑕(1985—),女,陕西汉中人,博士,副教授,硕士生导师,研究方向:新型酶基抗菌生物材料,E-mail:wuxia@sust.edu.cn
引用格式:吴瑕,龚国利,查健.基于细菌裂解酶的功能性生物材料及其应用[J].生物加工过程,2020,18(1):80-86.
WU Xia,GONG Guoli,ZHA Jian.Bacteriolytic enzyme-based functional biomaterials and their applications[J].Chin J Bioprocess Eng,2020,18(1):80-86..
更新日期/Last Update: 2019-01-30