|本期目录/Table of Contents|

[1]俞杰,秦磊,许可,等.细胞工厂氧化还原状态的荧光探针检测与调控[J].生物加工过程,2020,18(01):60-69.[doi:10.3969/j.issn.1672-3678.2020.01.008]
 YU Jie,QIN Lei,XU Ke,et al.Detection and regulation of the redox state in cell factories by fluorescent probes[J].Chinese Journal of Bioprocess Engineering,2020,18(01):60-69.[doi:10.3969/j.issn.1672-3678.2020.01.008]
点击复制

细胞工厂氧化还原状态的荧光探针检测与调控()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
60-69
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Detection and regulation of the redox state in cell factories by fluorescent probes
文章编号:
1672-3678(2020)01-0060-10
作者:
俞杰秦磊许可冯旭东李春
北京理工大学 化学与化工学院,北京 100081
Author(s):
YU JieQIN LeiXU KeFENG XudongLI Chun
School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China
关键词:
氧化还原状态 荧光探针 基因编码 氧化还原调控 细胞工厂
分类号:
Q815
DOI:
10.3969/j.issn.1672-3678.2020.01.008
文献标志码:
A
摘要:
氧化还原反应贯穿于细胞的整个生命历程,与细胞的新陈代谢息息相关。细胞的氧化还原平衡对细胞的能量代谢、生长代谢及合成代谢有着重要的影响。因此,细胞氧化还原状态的实时监测以及调控对于细胞工厂的高效生产有着重要意义。由于参与氧化还原反应的物质种类多、活性高、寿命短且相关代谢网络复杂,氧化还原状态的实时监测与调控一直是研究的热点与难点。本文中,笔者通过对影响细胞氧化还原反应的代谢物进行分析,以基因编码的荧光探针为主,介绍了检测细胞氧化还原状态的荧光探针,并阐述了调控氧化还原状态的常用方法及其在细胞工厂中的应用,为更好地实现细胞工厂的高效生物转化奠定基础。

参考文献/References:

[1] JAMIESON D J.Oxidative stress responses of the yeast Saccharomyces cerevisiae[J].Yeast,1998,14(16):1511-1527.
[2] LIU Y,FISKUM G,SCHUBERT D.Generation of reactive oxygen species by the mitochondrial electron transport chain[J].J Neurochem,2002,80(5):780-787.
[3] HUANG J,LAM G Y,BRUMELL J H.Autophagy signaling through reactive oxygen species[J].Antioxid Redox Signal,2011,14(11):2215-2231.
[4] HE L,HE T,FARRAR S,et al.Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J].Cell Physiol Biochem,2017,44(2):532-553.
[5] DICKINSON D A,FORMAN H J.Glutathione in defense and signaling:lessons from a small thiol[J].Ann New York Acad Sci,2002,973:488-504.
[6] FLOHE L.The fairytale of the GSSG/GSH redox potential[J].Biochim Biophys Acta,2013,1830(5):3139-3142.
[7] HU J,DONG L,OUTTEN C E.The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix[J].J Biol Chem,2008,283(43):29126-29134.
[8] GOODMAN R P,CALVO S E,MOOTHA V K.Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism[J].J Biol Chem,2018,293(20):7508-7516.
[9] MAILLOUX R J,TREBERG J R.Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria[J].Redox Biol,2016,8:110-118.
[10] XU J Z,YANG H K,ZHANG W G.NADPH metabolism:a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis[J].Crit Rev Biotechnol,2018,38(7):1061-1076.
[11] PINEGIN B,VOROBJEVA N,PASHENKOV M,et al.The role of mitochondrial ROS in antibacterial immunity[J].J Cell Physiol,2018,233(5):3745-3754.
[12] PANIERI E,SANTORO M M.ROS signaling and redox biology in endothelial cells[J].Cell Mol Life Sci,2015,72(17):3281-3303.
[13] BISQUERT R,MUNIZ-CALVO S,GUILLAMON J M.Protective role of intracellular melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae[J].Front Microbiol,2018,9:3-18.
[14] ZECHMANN B,LIOU L C,KOFFLER B E,et al.Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae[J].FEMS Yeast Res,2011,11(8):631-642.
[15] BRADSHAW P C.Cytoplasmic and mitochondrial NADPH-coupled redox systems in the regulation of aging[J].Nutrients,2019,11(3):12-22.
[16] KALYANARAMAN B,HARDY M,PODSIADLY R,et al.Recent developments in detection of superoxide radical anion and hydrogen peroxide:opportunities,challenges,and implications in redox signaling[J].Arch Biochem Biophys,2017,617:38-47.
[17] AUGUSTO O,MUNTZ VAZ S.EPR spin-trapping of protein radicals to investigate biological oxidative mechanisms[J].Amino Acids,2007,32(4):535-542.
[18] ZHAO J,ZHANG Y,SISLER J D,et al.Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches[J].Hazard Mater,2018,344:549-557.
[19] BARMAN U,MUKHOPADHYAY G,GOSWAMI N,et al.Detection of glutathione by glutathione-S-transferase-nanoconjugate ensemble electrochemical device[J].IEEE Trans Nanobiosci,2017,16(4):271-279.
[20] LORINCZ T,SZARKA A.The determination of hepatic glutathione at tissue and subcellular level[J].J Pharm Toxic Met,2017,88(1):32-39.
[21] HANKO M,SVORC L,PLANKOVA A,et al.Overview and recent advances in electrochemical sensing of glutathione[J].Anal Chim Acta,2019,1062:1-27.
[22] AYDOGDU TIG G.Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite[J].Talanta,2017,175(3):82-89.
[23] OMAR F S,DURAISAMY N,RAMESH K,et al.Conducting polymer and its composite materials based electrochemical sensor for nicotinamide adenine dinucleotide(NADH)[J].Biosens Bioelectron,2016,79:63-75.
[24] RIEDEL M,HOLZEL S,HILLE P,et al.InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH[J].Biosens Bioelectron,2017,94:298-304.
[25] SANGAMITHIRAI D,NARAYANAN V,MUTHURAAMAN B,et al.Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH[J].Mat Sci Eng C,2015,55(5):79-91.
[26] BLACKER T S,DUCHEN M R.Investigating mitochondrial redox state using NADH and NADPH autofluorescence[J].Free Radic Biol Med,2016,100:53-65.
[27] 肖海滨,李平,张雯,等.有机分子荧光探针成像检测线粒体内ROS的研究进展[J].中国科学:化学,2017,47(8):67-84.
[28] CHEN C,LIU W,XU C,et al.A colorimetric and fluorescent probe for detecting intracellular GSH[J].Biosens Bioelectron,2015,71:68-74.
[29] LIU C H,QI F P,WEN F B,et al.Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe[J].Methods Appl Fluoresc,2018,6(2):024001.
[30] BAIRD G S,ZACHARIAS D A,TSIEN R Y.Circular permutation and receptor insertion within green fluorescent proteins[J].Proc Natl Acad Sci USA,1999,96(20):11241-11246.
[31] MARKVICHEVA K N,BILAN D S,MISHINA N M,et al.A genetically encoded sensor for H2O2 with expanded dynamic range[J].Bioorg Med Chem,2011,19(3):1079-1084.
[32] BILAN D S,PASE L,JOOSEN L,et al.HyPer-3:a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging[J].ACS Chem Biol,2013,8(3):535-542.
[33] ERMAKOVA Y G,BILAN D S,MATLASHOV M E,et al.Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide[J].Nature Commun,2014,5:5222.
[34] ZHAO Y,JIN J,HU Q,et al.Genetically encoded fluorescent sensors for intracellular NADH detection[J].Cell Metab,2011,14(4):555-566.
[35] ZHAO Y,HU Q,CHENG F,et al.SoNar,a highly responsive NAD+/NADH sensor,allows high-throughput metabolic screening of anti-tumor agents[J].Cell Metab,2015,21(5):777-789.
[36] BILAN D S,MATLASHOV M E,GOROKHOVATSKY A Y,et al.Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments[J].Bioch Biophys Acta Bioenerg,2014,1840(3):951-957.
[37] HUNG Y P,ALBECK J G,TANTAMA M,et al.Imaging cytosolic NADH-NAD+redox state with a genetically encoded fluorescent biosensor[J].Cell Metab,2011,14(4):545-554.
[38] TEJWANI V,SCHMITT F J,WILKENING S,et al.Investigation of the NADH/NAD+ ratio in Ralstonia eutropha using the fluorescence reporter protein peredox[J].Biochim Biophys Acta Bioenerg,2017,1858(1):86-94.
[39] HANSON G T,AGGELER R,OGLESBEE D,et al.Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators[J].J Biol Chem,2004,279(13):13044-13053.
[40] DOOLEY C T,DORE T M,HANSON G T,et al.Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators[J].J Biol Chem,2004,279(21):22284-22293.
[41] GUTSCHER M,SOBOTTA M C,WABNITZ G H,et al.Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases[J].J Biol Chem,2009,284(46):31532-31540.
[42] MORGAN B,VAN LAER K,OWUSU T N,et al.Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes[J].Nat Chem Biol,2016,12(6):437-443.
[43] MORGAN B,SOBOTTA M C,DICK T P.Measuring EGSH and H2O2 with roGFP2-based redox probes[J].Free Radic Biol Med,2011,51:1943-1951.
[44] SHOKHINA A G,KOSTYUK A I,ERMAKOVA Y G,et al.Red fluorescent redox-sensitive biosensor Grx1-roCherry[J].Redox Biol,2019,21:1010-1071.
[45] DARDALHON M,KUMAR C,IRAQUI I,et al.Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes[J].Free Radic Biol Med,2012,52:2254-2265.
[46] BANACHLATAPY A,HE T,DARDALHON M,et al.Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state[J].Free Radic Biol Med,2013,65:436-445.
[47] BANACH-LATAPY A,HE T,DARDALHON M,et al.Monitoring dynamic changes of glutathione redox state in subcellular compartments of human cells:an approach based on rxYFP biosensor[J].Free Radic Biol Med,2014,75:1-33.
[48] BELLAPADRONA G,ELBAUM M.Design of a redox-sensitive supramolecular protein assembly system operating in live cells[J].Nano Lett,2016,16(10):6231-6235.
[49] LAM A J,ST-PIERRE F,GONG Y,et al.Improving FRET dynamic range with bright green and red fluorescent proteins[J].Nat Methods,2012,9(10):1005-1012.
[50] KOLOSSOV V L,SPRING B Q,SOKOLOWSKI A,et al.Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors[J].Exp Biol Med,2008,233(2):238-248.
[51] PIATTONI C V,SARDI F,KLEIN F,et al.New red-shifted fluorescent biosensor for monitoring intracellular redox changes[J].Free Radic Biol Med,2019,134:545-554.
[52] CAMERON W D,BUI C V,HUTCHINSON A,et al.Apollo-NADP+:a spectrally tunable family of genetically encoded sensors for NADP+[J].Nat Methods,2016,13(4):352-358.
[53] YANO T,OKU M,AKEYAMA N,et al.A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes[J].Mol Cell Biol,2010,30(15):3758-3766.
[54] CAMBRONNE X A,STEWART M L,KIM D,et al.Biosensor reveals multiple sources for mitochondrial NAD+[J].Science,2016,352:1474-1477.
[55] MCLAUGHLIN K J,STRAIN-DAMERELL C M,XIE K,et al.Structural basis for NADH/NAD+ redox sensing by a Rex family repressor[J].Mol Cell,2010,38(4):563-575.
[56] ZHANG J,SONNENSCHEIN N,PIHL T P,et al.Engineering an NADPH/NADP+ redox biosensor in yeast[J].ACS Synth Biol,2016,5(12):1546-1556.
[57] LIU Y,LANDICK R,RAMAN S.A regulatory NADH/NAD+ redox biosensor for bacteria[J].ACS Synth Biol,2019,8(2):264-273.
[58] XU K,GAO L,HASSAN J U,et al.Improving the thermo-tolerance of yeast base on the antioxidant defense system[J].Chem Eng Sci,2018,175:335-342.
[59] ASK M,MAPELLI V,HOCK H,et al.Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials[J].Microb Cell Fact,2013,12:87.
[60] XU P,QIAO K,STEPHANOPOULOS G.Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica[J].Biotechnol Bioeng,2017,114(7):1521-1530.
[61] QIU Z,DENG Z,TAN H,et al.Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene[J].J Ind Microbiol Biotechnol,2015,42(4):537-542.
[62] ZHU L,DONG H,ZHANG Y,et al.Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability[J].Metabol Eng,2011,13(4):426-434.
[63] PAN S,JIA B,LIU H,et al.Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae[J].Biotechnol Biofuels,2018,11:107.
[64] TAO R,ZHAO Y,CHU H,et al.Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism[J].Nat Methods,2017,14(7):720-728.
[65] SAINI M,HONG CHEN M,CHIANG C J,et al.Potential production platform of n-butanol in Escherichiacoli[J].Metab Eng,2015,27:76-82.
[66] WEN Z,MINTON N P,ZHANG Y,et al.Enhanced solvent production by metabolic engineering of a twin-clostridial consortium[J].Metab Eng,2017,39:38-48.
[67] SONG H S,JEON J M,KIM H J,et al.Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E.coli[J].Bioresour Technol,2017,245:1430-1435.
[68] WU W,ZHANG Y,LIU D,et al.Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum[J].Metab Eng,2019,52:77-86.
[69] SU L,SHEN Y,ZHANG W,et al.Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation[J].Microb Cell Fact,2017,16(1):182.
[70] LI Y,CONG H,LIU B,et al.Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level[J].Anton Van Leeuwenhoek,2016,109(9):1185-1197.
[71] XU J Z,YANG H K,LIU L M,et al.Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production[J].Biotechnol Bioeng,2018,115(7):1764-1777.
[72] XU J Z,RUAN H Z,CHEN X L,et al.Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping[J].Microbl Cell Fact,2019,18(1):65.
[73] LEE J Y,KANG C D,LEE S H,et al.Engineering cellular redox balance in Saccharomy cescerevisiae for improved production of L-lactic acid[J].Biotechnol Bioeng,2015,112(4):751-758.
[74] DELIC M,GRAF A B,KOELLENSPERGER G,et al.Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion[J].Microb Cell Fact,2014,1(11):376-386.
[75] ZHANG L,NIE X,RAVCHEEV D A,et al.Redox-responsive repressor Rex modulates alcohol production and oxidative stress tolerance in Clostridium acetobutylicum[J].J Bacteriol,2014,196(22):3949-3963.
[76] REYNOLDS T S,COURTNEY C M,ERICKSON K E,et al.ROS mediated selection for increased NADPH availability in Escherichia coli[J].Biotechnol Bioeng,2017,114(11):2685-2689.

相似文献/References:

[1]冷玲,李壹,熊晓辉.新型BODIPY类荧光探针及其对食品中Hg2+检测的应用[J].生物加工过程,2018,16(02):80.[doi:10.3969/j.issn.1672-3678.2018.02.012]
 LENG Ling,LI Yi,XIONG Xiaohui.BODIPY-based fluorescent probe for Hg2+ detection in food[J].Chinese Journal of Bioprocess Engineering,2018,16(01):80.[doi:10.3969/j.issn.1672-3678.2018.02.012]

备注/Memo

备注/Memo:
收稿日期:2019-08-31修回日期:2019-12-14
基金项目:国家重点研发计划(2018YFA0901800); 北京市科技计划重点项目(Z181100005118009)
作者简介:俞杰(1996—),女,安徽六安人,硕士研究生,研究方向:合成生物学; 冯旭东(联系人),副研究员,E-mail:xd.feng@bit.edu.cn
引用格式:俞杰,秦磊,许可,等.细胞工厂氧化还原状态的荧光探针检测与调控[J].生物加工过程,2020,18(1):60-69.
YU Jie,QIN Lei,XU Ke,et al.Detection and regulation of the redox state in cell factories by fluorescent probes[J].Chin J Bioprocess Eng,2020,18(1):60-69..
更新日期/Last Update: 2019-01-30