|本期目录/Table of Contents|

[1]项琦,姚长洪,谢成林,等.植物激素调控微藻储能物质积累研究进展[J].生物加工过程,2020,18(01):52-59.[doi:10.3969/j.issn.1672-3678.2020.01.007]
 XIANG Qi,YAO Changhong,XIE Chenglin,et al.Research progress in the regulation of energy-storage compounds accumulation in microalgae by phytohormones[J].Chinese Journal of Bioprocess Engineering,2020,18(01):52-59.[doi:10.3969/j.issn.1672-3678.2020.01.007]
点击复制

植物激素调控微藻储能物质积累研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
52-59
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Research progress in the regulation of energy-storage compounds accumulation in microalgae by phytohormones
文章编号:
1672-3678(2020)01-0052-08
作者:
项琦姚长洪谢成林焦荟璇冉雯仪张永奎李德富
四川大学 化学工程学院,四川 成都 610065
Author(s):
XIANG QiYAO ChanghongXIE ChenglinJIAO HuixuanRAN WenyiZHANG YongkuiLI Defu
School of Chemical Engineering,Sichuan University,Chengdu 610065,China
关键词:
微藻 植物激素 非生物胁迫 储能物质 生物燃料 生物基化学品
分类号:
Q819
DOI:
10.3969/j.issn.1672-3678.2020.01.007
文献标志码:
A
摘要:
微藻储能物质(碳水化合物、脂类等)可以作为生物燃料和生物基化学品的可再生原料。非生物胁迫(高光强、高盐度、营养盐限制、重金属等)传统诱导微藻储能物质积累的方法影响微藻的生长,从而限制了储能物质的高效积累。植物激素作为化学信使协调植物细胞活动的一类小分子物质,可对微藻的生理代谢活动产生调控作用,包括促进微藻细胞分裂,增加胁迫耐受,提高光合作用效率,从而提高藻类生物量,增加油脂、叶绿素和蛋白质含量。本文中,笔者概述了近年来国内外利用外源添加植物激素结合非生物胁迫条件调控微藻储能物质积累的研究进展,探讨了植物激素对微藻储能物质积累的作用机制,并提出未来可能的研究方向。

参考文献/References:

[1] GREENWELL H C,LAURENS L,SHIELDS R,et al.Placing microalgae on the biofuels priority list:a review of the technological challenges[J].J R Soc Interface,2009,7(46):703-726.
[2] SALAMA E S,HWANG J H,EL-DALATONY M M,et al.Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery:a review[J].Bioresour Technol,2018,258:365-375.
[3] RAN W,WANG H,LIU Y,et al.Storage of starch and lipids in microalgae:biosynthesis and manipulation by nutrients[J].Bioresour Technol,2019,291:121894.
[4] VO? U,BISHOPP A,FARCOT E,et al.Modelling hormonal response and development[J].Trends Plant Sci,2014,19(5):311-319.
[5] CHU J,LI Y,CUI Y,et al.The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum[J].J Appl Phycolo,2019,31(2):1009-19.
[6] LU Y,XU J.Phytohormones in microalgae:a new opportunity for microalgal biotechnology?[J].Trends Plant Sci,2015,20(5):273-282.
[7] GEORGE E F,HALL M A,DE KLERK G-J.Gibberellins,ethylene,abscisic acid,their analogues and inhibitors,miscellaneous compounds[M]//GEORGE E F.Plant growth regulators.Berlin:Springer-Virlag.2008:227-281.
[8] KENRICK P,CRANE P R.The origin and early evolution of plants on land[J].Nature,1997,389:33-39.
[9] 肖丹曦.植物激素ABA和GA对紫球藻生长的影响[D].广州:暨南大学,2009.
[10] HAN X,ZENG H,BARTOCCI P,et al.Phytohormones and effects on growth and metabolites of microalgae:a review[J].Fermentation,2018,4(2):25.
[11] 李喜明,赵永腾,余旭亚.褪黑素调控缺氮胁迫下单针藻中油脂积累的影响[J].食品与发酵工业,2019,45(2):39-44.
[12] XU J,FAN X,LI X,et al.Effect of salicylic acid on fatty acid accumulation in Phaeodactylum tricornutum during stationary growth phase[J].J Appl Phycol,2017,29(6):2801-2810.
[13] 杨青.植物激素对裂殖壶菌生长与DHA含量的影响及裂殖壶菌中脂肪酸提取方法的研究[D].青岛:青岛科技大学,2011.
[14] GEORGE E F,HALL M A,DE KLERK G J.Plant growth regulators I:introduction; auxins,their analogues and inhibitors[M]//Plant propagation by tissue culture.New York:Springer.2008:175-204.
[15] BABU A G,WU X,KABRA A N,et al.Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation[J].Algal Res,2017,23:178-185.
[16] GULDHE A,RENUKA N,SINGH P,et al.Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production[J].Algal Res,2019,40:101518.
[17] 李国强.植物激素诱导微藻生产生物柴油和高附加值次生代谢物的研究[D].淄博:山东理工大学,2016.
[18] KHASIN M,CAHOON R E,ALVAREZ S,et al.Synthesis,secretion,and perception of abscisic acid regulates stress responses in Chlorella sorokiniana[J].bioRxiv,2017,doi:https://doi.org/10.1101/180547.
[19] LIU Y,CHEN X,WANG X,et al.Improving biomass and starch accumulation of bioenergy crop duckweed(Landoltia punctata)by abscisic acid application[J].Sci Rep,2018,8(1):9544.
[20] 赵艳霞,郑维发,魏江春.脱落酸对盐藻SZ-05药理活性成分积累的影响[J].解放军药学学报,2007(1):13-16.
[21] KOBAYASHI M,HIRAI N,KURIMURA Y,et al.Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis[J].Plant Growth Regul,1997,22(2):79-85.
[22] SPONSEL V M,HEDDEN P.Gibberellin biosynthesis and inactivation[M]//Plant hormones.New York:Springer,2010:63-94.
[23] YU X J,SUN J,SUN Y Q,et al.Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp[J].Biochem Eng J,2016,112:258-268.
[24] DU K,TAO H,WEN X,et al.Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3[J].Fresen Environ Bull,2015,24:3414-3419.
[25] FALKOWSKA M,PIETRYCZUK A,PIOTROWSKA A,et al.The effect of gibberellic acid(GA3)on growth,metal biosorption and metabolism of the green algae Chlorella vulgaris(Chlorophyceae)Beijerinck exposed to cadmium and lead stress[J].Pol J Environ Stud,2011,20:53-59.
[26] 花凯.激素类物质对小球藻培养的影响研究[D].北京:北京化工大学,2015.
[27] WERNER T,SCHM?LLING T.Cytokinin action in plant development[J].Curr Opin Pplant Biol,2009,12(5):527-538.
[28] STIRK W A,?RD?G V,NOV?K O,et al.Auxin and cytokinin relationships in 24 microalgal strains[J].J Pphycol,2013,49(3):459-467.
[29] MOUSAVI P,MOROWVAT M H,MONTAZERI-NAJAFABADY N,et al.Investigating the effects of phytohormones on growth and β-carotene production in a naturally isolates stain of Dunaliella salina [J].J Appl Pharm Sci,2016,6:164-171.
[30] PIOTROWSKA A,CZERPAK R.Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck(Chlorophyceae)to exogenous adenine- and phenylurea-type cytokinins[J].Acta Physiol Plant,2009,31(3):573-585.
[31] ROMANENKO K D,KOSAKOVSKAYA I V,ROMANENKO P O.Phytohormones of microalgae:biological role and involvement in the regulation of physiological processes[J].Int J Algae,2016,18(2):179-201.
[32] PIERIK R,THOLEN D,POORTER H,et al.The Janus face of ethylene:growth inhibition and stimulation[J].Trends Plant Sci,2006,11(4):176-183.
[33] WANG K L C,LI H,ECKER J R.Ethylene biosynthesis and signaling networks[J].Plant Cell,2002,14(S1):S131-S151.
[34] MAILLARD P,THEPENIER C,GUDIN C.Determination of an ethylene biosynthesis pathway in the unicellular green alga,Haematococcus pluvialis:relationship between growth and ethylene production[J].J Appl Phycol,1993,5(1):93-98.
[35] HUANG T C,CHOW T J.Ethylene production by blue-green algae[J].Bot Bull Acad Sinica,1984,25:81-86.
[36] VO T T,LEE C,HAN S I,et al.Effect of the ethylene precursor,1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis[J].Bioresour Technol,2016,220:85-93.
[37] KIM S H,LIM S R,HONG S J,et al.Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris[J].J Agric Food Chem,2016,64(23):4807-4816.
[38] ALVAREZ M E.Salicylic acid in the machinery of hypersensitive cell death and disease resistance[M]//Programmed cell death in higher plants.New York:Springer.2000:185-198.
[39] 张卫,孙国新,徐玉新,等.植物体内水杨酸分析方法的探讨及其应用[J].生态毒理学报,2009,4(6):889-897.
[40] GUO B,LIANG Y,ZHU Y,et al.Role of salicylic acid in alleviating oxidative damage in rice roots(Oryza sativa)subjected to cadmium stress[J].Environ Poll,2007,147(3):743-749.
[41] MIRSHEKARI M,EINALI A,VALIZADEH J.Metabolic changes and activity pattern of antioxidant enzymes induced by salicylic acid treatment in green microalga Dunaliella salina under nitrogen deficiency[J].J Appl Phycol,2019,31(3):1709-1719.
[42] GAO Z,MENG C,ZHANG X,et al.Induction of salicylic acid(SA)on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis[J].Enzyme Microb Technol,2012,51(4):225-230.
[43] LEE J E,CHO Y U,KIM K H,et al.Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid[J].Process Biochem,2016,51(9):1147-1154.
[44] ZHAO P,LIN Z,WANG Y,et al.Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism[J].Sci Total Environ,2019,693:133650.
[45] YU X,CHEN L,ZHANG W.Chemicals to enhance microalgal growth and accumulation of high-value bioproducts[J].Frontiers Microbiology,2015,6:56.
[46] TALAREK-KARWEL M,BAJGUZ A,PIOTROWSKA-NICZYPORUK A,et al.The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus(Chlorophyceae)[J].Plant Physiol Biochem,2018,124:175-183.
[47] LIU J,QIU W,XIA D.Brassinosteroid improves lipid productivity and stress tolerance of Chlorella cells induced by high temperature[J].J Appl Phycol,2018,30(1):253-260.
[48] STIRK W A,B?LINT P,TARKOWSK? D,et al.Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress[J].Eur J Phycol,2018,53(3):273-279.
[49] BAJGUZ A,PIOTROWSKA-NICZYPORUK A.Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris(Trebouxiophyceae)[J].Plant Physiol Biochen,2013,71:290-297.
[50] ZHAO Y,WANG H-P,HAN B,et al.Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae:a review[J].Bioresour Technol,2019,274:549-556.
[51] LU Y,JIANG P,LIU S,et al.Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes(bkts)in microalga Haematococcus pluvialis[J].Bioresour Technol,2010,101(16):6468-6474.
[52] ZHAO Y,LI D,XU J W,et al.Melatonin enhances lipid production in Monoraphidium sp.QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J].Bioresour Technol,2018,259:46-53.
[53] CHOKSHI K,PANCHA I,GHOSH A,et al.Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus[J].Biotechnol Biofuels,2017,10(1):60.
[54] QI M,YAO C,SUN B,et al.Application of an in situ CO2-bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis[J].Biotechnol Biofuels,2019,12(1):184.
[55] YAO C,AI J,CAO X,et al.Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation[J].Bioresour Technol,2012,118:438-444.
[56] RENUKA N,GULDHE A,SINGH P,et al.Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress[J].Energy Conver Manag,2017,140:14-23.
[57] YAO C H,AI J N,CAO X P,et al.Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis[J].Bioresour Technol,2013,146:663-671.
[58] YOSHIDA K,IGARASHI E,WAKATSUKI E,et al.Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii[J].Plant Science,2004,167(6):1335-1341.
[59] TIWARI S,PATEL A,PRASAD S M.Kinetin alleviates chromium toxicity on growth and PSII photochemistry in Nostoc muscorum by regulating antioxidant system[J].Ecotoxicol Environ Safety,2018,161:296-304.
[60] ZHAO P,WANG Y,LIN Z,et al.The alleviative effect of exogenous phytohormones on the growth,physiology and gene expression of Tetraselmis cordiformis under high ammonia-nitrogen stress[J].Bioresour Technol,2019,282:339-347.
[61] LU Y,TARKOWSK? D,TURECˇKOV? V,et al.Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function[J].Plant J,2014,80(1):52-68.
[62] RENUKA N,GULDHE A,SINGH P,et al.Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation[J].Energy Conver Manag,2018,168:522-528.
[63] HUNT R W,CHINNASAMY S,BHATNAGAR A,et al.Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga,Chlorella sorokiniana[J].Appl Biochem Biotechnol,2010,162(8):2400-2414.
[64] 钱领,刘广发,高亚辉,等.多胺和植物激素对巴氏杜氏藻生长及脂类含量的影响[J].应用海洋学学报,2015(3):434-439.
[65] 杨凯,史全良.不同浓度IAA对微藻(Oedocladium sp.TH6)生长及脂肪酸含量的影响[J].植物资源与环境学报,2009,18(2):80-83.
[66] 罗川,任丽平,张智,等.植物激素与底物浓度对小球藻生长及油脂积累的影响[J].应用与环境生物学报,2019,doi:10.19675/j.cnki.1006-687x.2019.02036.
[67] 陶翠丽,袁重桂,阮成旭,等.不同植物激素对长茎葡萄蕨藻生长的影响[J].福州大学学报(自然科学版),2017(2):291-295.
[68] SULOCHANA S B,ARUMUGAM M.Influence of abscisic acid on growth,biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition[J].Bioresour Technol,2016,213:198-203.
[68] 陈颖,赵培,王雪青,等.3种植物激素对螺旋藻生长和代谢产物含量的影响[J].海洋科学,2009,33(2):11-16.
[70] UDAYAN A,KATHIRESAN S,ARUMUGAM M.Kinetin and gibberellic acid(GA3)act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201[J].Algal Res,2018,32:182-192.
[71] 朱尧.三种植物激素对三种微藻生理生化的影响[D].大连:辽宁师范大学,2018.
[72] 李大菲,赵永腾,余旭亚.褪黑素对单针藻油脂积累的影响[J].水生生物学报,2018(2):421-427.
[73] 董训赞,赵永腾,余旭亚.褪黑素诱导糖蜜废醪液培养单针藻Monoraphidium sp.FXY-10产生物燃料[J].化工进展,2019(5):2421-2428.
[74] KOKKILIGADDA S,PANDEY B,RONDA S R.Effect of plant growth regulators on production of alpha-linolenic acid from microalgae Chlorella pyrenoidosa[J].Sādhanā,2017,42(10):1821-1824.
[75] YU Z,PEI H,JIANG L,et al.Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae[J].Bioresour Technol,2018,247:904-914.

相似文献/References:

[1]刘春朝,刘瑞,王锋.微藻培养过程的光特性研究进展[J].生物加工过程,2011,9(06):69.[doi:doi:10.3969/j.issn.1672-3678.2011.06.015]
 LIU Chunzhao,LIU Rui,WANG Feng.Research progress on light characteristics in process of microalgal cultivation[J].Chinese Journal of Bioprocess Engineering,2011,9(01):69.[doi:doi:10.3969/j.issn.1672-3678.2011.06.015]
[2]杨忠华,李方芳,曹亚飞,等.利用微藻固定CO2实现碳减排研究进展[J].生物加工过程,2012,10(01):70.[doi:10.3969/j.issn.1672-3678.2012.01.014]
 YANG Zhonghua,LI Fangfang,CAO Yafei,et al.Recent progress in fixation CO2 to reduce CO2 emission with microalgae[J].Chinese Journal of Bioprocess Engineering,2012,10(01):70.[doi:10.3969/j.issn.1672-3678.2012.01.014]
[3]刘玉环,阮榕生,孔庆学,等.利用市政废水和火电厂烟道气大规模培养高油微藻[J].生物加工过程,2008,6(03):29.[doi:10.3969/j.issn.1672-3678.2008.03.005]
 LIU Yu-huan,Roger RUAN,KONG Qing-xue,et al.Mass culture of high oil content microalgae on wastewater and power plant flue gases[J].Chinese Journal of Bioprocess Engineering,2008,6(01):29.[doi:10.3969/j.issn.1672-3678.2008.03.005]
[4]孔维宝,牛世全,马正学,等.微藻生物炼制技术[J].生物加工过程,2008,6(05):1.[doi:10.3969/j.issn.1672-3678.2008.05.001 ]
 KONG Wei-bao,NIU Shi-quan,MA Zheng-xue,et al.Microalgae bio-refinery technology[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.05.001 ]
[5]陈智杰,何宏舟.微藻培养系统内光现象的研究进展[J].生物加工过程,2014,12(05):85.[doi:10.3969/j.issn.1672-3678.2014.05.015]
 CHEN Zhijie,HE Hongzhou.Light phenomena in microalgae culturing systems[J].Chinese Journal of Bioprocess Engineering,2014,12(01):85.[doi:10.3969/j.issn.1672-3678.2014.05.015]
[6]刘玉环,黄磊,王允圃,等.大规模微藻光生物反应器的研究进展[J].生物加工过程,2016,14(01):65.[doi:10.3969/j.issn.1672-3678.2016.01.013]
 LIU Yuhuan,HUANG Lei,WANG Yunpu,et al.Development of microalgal photobioreactors for mass cultivation[J].Chinese Journal of Bioprocess Engineering,2016,14(01):65.[doi:10.3969/j.issn.1672-3678.2016.01.013]
[7]林海龙,赵权宇,黄和.微藻处理废水的研究进展[J].生物加工过程,2019,17(01):72.[doi:10.3969/j.issn.1672-3678.2019.01.010]
 LIN Hailong,ZHAO Quanyu,HUANG He.Progress in wastewater treatment by microalgae[J].Chinese Journal of Bioprocess Engineering,2019,17(01):72.[doi:10.3969/j.issn.1672-3678.2019.01.010]

备注/Memo

备注/Memo:
收稿日期:2019-10-29修回日期:2019-12-21
基金项目:国家自然科学基金(41406177); 中央高校基础研究基金(YJ201734); 四川大学大学生创新创业训练计划(C2019107170)
作者简介:项琦(1995—),女,四川达州人,硕士研究生,研究方向:微藻代谢调控; 姚长洪(联系人),副教授,E-mail:yaochanghong@scu.edu.cn
引用格式:项琦,姚长洪,谢成林,等.植物激素调控微藻储能物质积累研究进展[J].生物加工过程,2020,18(1):52-59.
XIANG Qi,YAO Changhong,XIE Chenglin,et al.Research progress in the regulation of energy-storage compounds accumulation in microalgae by phytohormones[J].Chin J Bioprocess Eng,2020,18(1):52-59..
更新日期/Last Update: 2019-01-30