|本期目录/Table of Contents|

[1]徐镇祥,李美洁,门潇,等.甲羟戊酸途径的代谢支路调控策略的研究进展[J].生物加工过程,2020,18(01):44-51.[doi:10.3969/j.issn.1672-3678.2020.01.006]
 XU Zhenxiang,LI Meijie,MEN Xiao,et al.Progress in metabolic pathway bypass regulation strategies of the mevalonate pathway[J].Chinese Journal of Bioprocess Engineering,2020,18(01):44-51.[doi:10.3969/j.issn.1672-3678.2020.01.006]
点击复制

甲羟戊酸途径的代谢支路调控策略的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
18
期数:
2020年01期
页码:
44-51
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Progress in metabolic pathway bypass regulation strategies of the mevalonate pathway
文章编号:
1672-3678(2020)01-0044-08
作者:
徐镇祥12李美洁3门潇1陈国强1王纪明1咸漠1张海波1
1.中国科学院 青岛生物能源与过程研究所 生物基材料重点实验室,山东 青岛 266101; 2.齐鲁工业大学(山东省科学院) 生物工程学院,山东 济南 250300; 3.青岛农业大学 生命科学学院 光合固碳产能中心,山东 青岛 266109
Author(s):
XU Zhenxiang12LI Meijie3MEN Xiao1CHEN Guoqiang1WANG Jiming1XIAN Mo1ZHANG Haibo1
1. CAS Key Laboratory of Biobased Materials,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences,Qingdao 266101,China; 2. School of Bioengineering,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250300,China; 3. Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center,College of Life Sciences,Qingdao Agricultural University,Qingdao 266109,China
关键词:
甲羟戊酸 代谢支路 前体物质 辅助因子 阻断竞争途径 宿主体进化 萜类化合物 代谢调控
分类号:
Q943.2
DOI:
10.3969/j.issn.1672-3678.2020.01.006
文献标志码:
A
摘要:
萜类化合物作为一大类重要天然产物,在食品、化工、医药和能源等领域广泛应用。微生物法合成萜类化合物因具有生产周期较短、可规模化生产等优点,是目前研究的热点。但是生产效率低严重制约着微生物法合成萜类化合物的工业化发展,而代谢调控是解决上述问题的主要有效手段之一。目前,多数学者集中于主路径的代谢调控研究,忽略了对于萜类化合物的生产至关重要的支路径。本文中,笔者围绕支路径调控直接相关的前体物质供应和辅助因子的协调、竞争途径的调控以及间接对代谢调控产生影响的宿主体的进化三个方面,综述萜类化合物甲羟戊酸途径的代谢途径支路调控策略研究进展,并对代谢路径支路调控的发展方向做进一步展望。

参考文献/References:

[1] ASHOUR M,WINK M,GERSHENZON J.Biochemistry of terpenoids:monoterpenes,sesquiterpenes and diterpenes[M]//WINK M.Biochemistry of plant secondary metabolism.2nd Ed.Hoboken:Wiley Blackwell.2010:258-303.
[2] CHRISTIANSON D W.Unearthing the roots of the terpenome[J].Curr Opin Chem Biol,2008,12(2):141-150.
[3] WHITED G M,FEHER F J,BENKO D A.Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering[J].Ind Biotechnol,2010,6(3):152-163.
[4] BECK Z Q,CERVIN M A,NIELSEN A T,et al.Compositions and methods of PGL for the increased production of isoprene:US20100978324[P].2020-11-23.
[5] ZHOU Y J,KERKHOVEN E J,NIELSEN J.Barriers and opportunities in bio-based production of hydrocarbons[J].Nat Energy,2018,3(11):925-935.
[6] WU W,LIU F,DAVIS R W.Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds[J].Metab Eng Commun,2018,6:13-21.
[7] LICHTENTHALERA H K,SCHWENDERA J,DISCHB A,et al.Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway[J].FEBS Lett,1997,400(3):271-274.
[8] RODRIGUEZ-CONCEPCION M.Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids:a metabolic milestone achieved through genomics[J].Plant Physiol,2002,130(3):1079-1089.
[9] BLOCH K.Sterol molecule:structure,biosynthesis,and function[J].Steroids,1992,57(8):378-383.
[10] GOLDSTEIN J L,BROWN M S.Regulation of the mevalonate pathway[J].Nature,1990,343:425-430.
[11] KIM J H,WANG C,JANG H J,et al.Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts[J].Microb Cell Fact,2016,15(1):214.
[12] LV X,WANG F,ZHOU P,et al.Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J].Nat Commun,2016,7:12851.
[13] KWAK S,KIM S R,XU H,et al.Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae[J].Biotechnol Bioeng,2017,114(11):176-185.
[14] CHEN Y,DAVIET L,SCHALK M,et al.Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J].Metab Eng,2013,15(1):48-54.
[15] ZHOU J,YANG L,WANG C,et al.Enhanced performance of the methylerythritol phosphate pathway by manipulation of redox reactions relevant to IspC,IspG,and IspH[J].J Biotechnol,2017,248:1-8.
[16] ZHAO J,LI C,ZHANG Y,et al.Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J].Microb Cell Fact,2017,16(1):17.
[17] ZHOU J,WANG C,YOON S H,et al.Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation[J].J Biotechnol,2014,169:42-50.
[18] PENG B,PLAN M R,CHRYSANTHOPOULOS P,et al.A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae[J].Metab Eng,2017,39:209-219.
[19] SARRIA S,WONG B,GARCIA MARTIN H,et al.Microbial synthesis of pinene[J].ACS Synth Biol,2014,3(7):466-475.
[20] YANG J,NIE Q,REN M,et al.Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene[J].Biotechnol Biofuels,2013,6(1):60.
[21] XIE W,YE L,LV X,et al.Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J].Metab Eng,2015,28:8-18.
[22] SHEN H J,CHENG B Y,ZHANG Y M,et al.Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J].Metab Eng,2016,38:180-190.
[23] WANG N,GUAN B,KONG Q,et al.Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding[J].J Biotechnol,2016,236:71-77.
[24] SUN Z,HAILIN M,JING L,et al.Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae[J].PLoS ONE,2014,9(11):e112615.
[25] ZHU F,ZHONG X,HU M,et al.In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli[J].Biotechnol Bioeng,2014,111(7):1396-1405.
[26] TASHIRO M,KIYOTA H,KAWAI-NOMA S,et al.Bacterial production of pinene by a laboratory-evolved pinene-synthase[J].ACS Synth Biol,2016,5(9):1011-1020.
[27] HENRY L,CASTRO N M,BENNETT G N,et al.Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation:a potential tool in metabolic engineering[J].Appl Microbiol Biotechnol,2006,71(6):870-874.
[28] VADALI R V,BENNETT G N,SAN K Y.Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli[J].Metab Eng,2004,6(2):133-139.
[29] VADALI R V,BENNETT G N,SAN K Y.Enhanced isoamyl acetate production upon manipulation of the acetyl-CoA node in Escherichia coli[J].Biotechnol Prog,2010,20(3):692-697.
[30] MEADOWS A L,HAWKINS K M,TSEGAYE Y,et al.Rewriting yeast central carbon metabolism for industrial isoprenoid production[J].Nature,2016,537:694-697.
[31] 秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25(2):161-169.
[32] MARTIN V J,PITERA D J,WITHERS S T,et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J].Nat Biotechnol,2003,21(7):796-802.
[33] GUANTES R,POYATOS J F.Dynamical principles of two-component genetic oscillators[J].PLoS Comput Biol,2006,2(3):e30.
[34] KIJIMA H,ISHIDA H,OHKAWA T,et al.Therapeutic applications of ribozymes[J].Pharmacol Ther,2010,10(5):551-556.
[35] 赵雨佳,张根林,周晓宏,等.核糖核酸开关用于微生物细胞工厂的智能与精细调控[J].化工学报,2015,66(10):3811-3819.
[36] MELLIN J R,COSSART P.Unexpected versatility in bacterial riboswitches[J].Trends Genet,2015,31(3):150-156.
[37] DAHL R H,FUZHONG Z,JORGE A G,et al.Engineering dynamic pathway regulation using stress-response promoters[J].Nat Biotechnol,2013,31(11):1039-1046.
[38] VENAYAK N,ANESIADIS N,CLUETT W R,et al.Engineering metabolism through dynamic control[J].Curr Opin Biotechnol,2015,34:142-152.
[39] ZHUANG K,YANG L,CLUETT W R,et al.Dynamic strain scanning optimization:an efficient strain design strategy for balanced yield,titer,and productivity.DySScO strategy for strain design[J].BMC Biotechnol,2013,13(1):8.
[40] ZHANG J H,CHUNG T D Y,OLDENBURG K R.A Simple statistical parameter for use in evaluation and validation of high throughput screening assays[J].J Biomol Screening,1999,4(2):67-73.
[41] 刘继栋,周景文,陈坚.酿酒酵母耐受单萜类化合物的机理研究进展[J].微生物学报,2013,53(6):531-537.
[42] GONG Z,NIELSEN J,ZHOU Y J.Engineering robustness of microbial cell factories[J].Biotechnol J,2017,doi:10.1002/biot.201700014.
[43] ZHANG H,LIU Q,CAO Y,et al.Microbial production of sabinene:a new terpene-based precursor of advanced biofuel[J].Microb Cell Fact,2014,13(1):20.
[44] BRENNAN T C,WILLIAMS T C,SCHULZ B L,et al.Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae[J].Appl Environ Microbiol,2015,81(10):3316-3325.
[45] YOMANO L P,YORK S W,INGRAM L O.Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production[J].J Ind Microbiol Biotechnol,1998,20(2):132-138.
[46] ATSUMI S,WU T U,MACHADO I M P,et al.Evolution,genomic analysis,and reconstruction of isobutanol tolerance in Escherichia coli[J].Mol Syst Biol,2014,6(1):449.
[47] KUK-KI H,WANWIPA V,VEMURI G N,et al.Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis[J].Proc Nat Acad Sci USA,2011,108(29):12179-12184.
[48] SCALCINATI G,OTERO J M,VAN VLEET J R,et al.Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption[J].FEMS Yeast Res,2012,12(5):582-597.

备注/Memo

备注/Memo:
收稿日期:2019-09-01修回日期:2019-11-04
基金项目:青岛市源头创新计划(17-1-1-58-jch)
作者简介:徐镇祥(1994—),男,山东菏泽人,硕士研究生,研究方向:生物工程; 张海波(联系人),研究员,E-mail:zhanghb@qibebt.ac.cn
引用格式:徐镇祥,李美洁,门潇,等.甲羟戊酸途径的代谢支路调控策略的研究进展[J].生物加工过程,2020,18(1):44-51.
XU Zhenxiang,LI Meijie,MEN Xiao,et al.Progress in metabolic pathway bypass regulation strategies of the mevalonate pathway[J].Chin J Bioprocess Eng,2020,18(1):44-51..
更新日期/Last Update: 2019-01-30