|本期目录/Table of Contents|

[1]高教琪,段兴鹏,周雍进.酵母细胞工厂生产脂肪酸及其衍生物[J].生物加工过程,2018,16(01):19-30.[doi:10.3969/j.issn.1672-3678.2018.01.003]
 GAO Jiaoqi,DUAN Xingpeng,ZHOU Yongjin.Production of fatty acids and their derivatives by yeast cell factories[J].Chinese Journal of Bioprocess Engineering,2018,16(01):19-30.[doi:10.3969/j.issn.1672-3678.2018.01.003]
点击复制

酵母细胞工厂生产脂肪酸及其衍生物()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年01期
页码:
19-30
栏目:
出版日期:
2018-01-30

文章信息/Info

Title:
Production of fatty acids and their derivatives by yeast cell factories
文章编号:
1672-3678(2018)01-0019-12
作者:
高教琪段兴鹏周雍进
中国科学院 大连化学物理研究所 生物技术研究部,辽宁 大连 116023
Author(s):
GAO JiaoqiDUAN XingpengZHOU Yongjin
Division of Biotechnology,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
关键词:
酿酒酵母 解脂耶氏酵母 细胞工厂 脂肪酸 合成生物学
分类号:
Q815
DOI:
10.3969/j.issn.1672-3678.2018.01.003
文献标志码:
A
摘要:
脂肪酸及其衍生物具有广泛的应用前景,特别是作为先进燃料能够缓解目前全球范围内的能源危机与环境污染问题。从微生物出发,利用生物发酵的方法生产脂肪酸及其衍生物被认为是一种可再生且环境友好的生产模式。随着酵母细胞研究的不断深入以及基因操作平台的日益完善,酵母细胞工厂成为继大肠杆菌细胞工厂之后又一脂肪酸类化合物的高产平台,也在其工业化进程的不断推动下面临着前所未有的机遇与挑战。因此,本文中,笔者综述了近年来以酵母细胞(主要包括酿酒酵母、解脂耶氏酵母和圆红冬孢酵母)为宿主菌构建的细胞工厂在生产脂肪酸、脂肪醇和烷烃方面的研究进展。同时,提出了提高酵母产脂肪酸及其衍生物产量的基本合成生物学策略,为其进一步的研究和工业化进程奠定良好的理论基础。

参考文献/References:

[1] ZHOU Y J,BUIJS N A,SIEWERS V,et al.Fatty acid-derived biofuels andchemicals production in Saccharomyces cerevisiae[J].Front Bioeng Biotechnol,2014,2:32.
[2] PERALTA-YAHYA P P,ZHANG F,DEL CARDAVRE S B,et al.Microbial engineering for the production of advanced biofuels[J].Nature,2012,488:320-328.
[3] TEE T W,CHOWDHURY A,MARANAS C D,et al.Systems metabolic engineering design:fatty acid production as an emerging case study[J].Biotechnol Bioeng,2014,111(5):849-857.
[4] LIU R,ZHU F,LU L,et al.Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli[J].Metab Eng,2014,22:10-21.
[5] FILLET S,ADRIO J L.Microbial production of fatty alcohols[J].World J Microbiol Biotechnol,2016,32(9):152.
[6] ZHU Q,JACKSON E N.Metabolic engineering of Yarrowia lipolytica for industrial applications[J].Curr Opin Biotechnol,2015,36:65-72.
[7] WANG C,PFLEGER B F,KIM S W.Reassessing Escherichia coli as a cell factory for biofuel production[J].Curr Opin Biotechnol,2017,45:92-103.
[8] CAO Y X,XIAO W H,LIU D,et al.Biosynthesis of odd-chain fatty alcohols in Escherichia coli[J].Metab Eng,2015,29:113-123.
[9] CHOI Y J,LEE S Y.Microbial production of short-chain alkanes[J].Nature,2013,502:571-574.
[10] NIELSEN J.Yeast cell factories on the horizon[J].Science,2015,349:1050-1051.
[11] BUIJS N A,ZHOU Y J,SIEWERS V,et al.Long-chain alkane production by the yeast Saccharomyces cerevisiae[J].Biotechnol Bioeng,2015,112(6):1275-1279.
[12] FENG X,LIAN J,ZHAO H.Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production[J].Metab Eng,2015,27:10-19.
[13] RUTTER C D,RAO C V.Production of 1-decanol by metabolically engineered Yarrowia lipolytica[J].Metab Eng,2016,38:139-147.
[14] WANG G,XIONG X,GHOGARE R,et al.Exploring fatty alcohol-producing capability of Yarrowia lipolytica[J].Biotechnol Biofuels,2016,9(1):107.
[15] QIAO K,WASYLENKO T M,ZHOU K,et al.Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J].Nat Biotechnol,2017,35(2):173-177.
[16] ZHOU Y J,BUIJS N A,ZHU Z,et al.Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories[J].Nat Commun,2016,7:11709.
[17] FAKAS S.Lipid biosynthesis in yeasts:a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica[J].Eng Life Sci,2017,17(3):292-302.
[18] KRIVORUCHKO A,ZHANG Y,SIEWERS V,et al.Microbial acetyl-CoA metabolism and metabolic engineering[J].Metab Eng,2015,28:28-42.
[19] TANG X,FENG H,CHEN W N.Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae[J].Metab Eng,2013,16:95-102.
[20] RUNGUPHAN W,KEASLING J D.Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals[J].Metab Eng,2014,21:103-113.
[21] YU T,ZHOU Y J,WENNING L,et al.Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals[J].Nat Commun,2017,8:15587.
[22] D’ESPAUX L,GHOSH A,RUNGUPHAN W,et al.Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks[J].Metab Eng,2017,42:115-125.
[23] CHEN B,LEE D Y,CHANG M W.Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production[J].Metab Eng,2015,31:53-61.
[24] LEBER C,DA SILVA N A.Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids[J].Biotechnol Bioeng,2014,111(2):347-358.
[25] LEBER C,CHOI J W,POLSON B,et al.Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae[J].Biotechnol Bioeng,2016,113(4):895-900.
[26] ZHU Z,ZHOU Y J,KRIVORUCHKO A,et al.Expanding the product portfolio of fungal type I fatty acid synthases[J].Nat Chem Biol,2017,13(4):360-362.
[27] KANG M K,ZHOU Y J,BUIJS N A,et al.Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae[J].Microb Cell Fact,2017,16(1):74.
[28] JIN Z,WONG A,FOO J L,et al.Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols[J].Biotechnol Bioeng,2016,113(4):842-851.
[29] CHEN L,ZHANG J,LEE J,et al.Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism[J].Appl Microbiol Biotechnol,2014,98(15):6739-6750.
[30] LI X,GUO D,CHENG Y,et al.Overproduction of fatty acids in engineered Saccharomyces cerevisiae[J].Biotechnol Bioeng,2014,111(9):1841-1852.
[31] JUNG Y,KIM S,LEE S,et al.Effect of heterologous expression of genes involved in the elongation cycle of fatty acid synthesis on fatty acid production in Saccharomyces cerevisiae[J].Biotechnol Bioproc E,2015,20(1):1-9.
[32] LIAN J,ZHAO H.Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals[J].ACS Synth Biol,2014,4(3):332-341.
[33] TANG X,CHEN W N.Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae[J].Biotechnol Bioeng,2015,112(2):386-392.
[34] JIM?NEZ-D?AZ L,CABALLERO A,P?REZ-HERN?NDEZ N,et al.Microbial alkane production for jet fuel industry:motivation,state of the art and perspectives[J].Microb Biotechnol,2017,10(1):103-124.
[35] BERNARD A,DOMERGUE F,PASCAL S,et al.Reconstitution of plant alkane biosynthesis in yeast demonstrates that arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex[J].Plant Cell,2012,24(7):3106-3118.
[36] ZINJARDE S S.Food-related applications of Yarrowia lipolytica[J].Food Chem,2014,152:1-10.
[37] MADZAK C.Yarrowia lipolytica:recent achievements in heterologous protein expression and pathway engineering[J].Appl Microbiol Biotechnol,2015,99(11):4559-4577.
[38] TAI M,STEPHANOPOULOS G.Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production[J].Metab Eng,2013,15:1-9.
[39] VORAPREEDA T,THAMMARONGTHAM C,CHEEVADHANARAK S,et al.Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis:involvement in the lipid production of oleaginous yeast and fungi[J].Microbiology,2012,158(1):217-228.
[40] FONTANILLE P,KUMAR V,CHRISTOPHE G,et al.Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica[J].Bioresour Technol,2012,114:443-449.
[41] BLAZECK J,HILL A,LIU L,et al.Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production[J].Nat Commun,2014,5:3131.
[42] BEOPOULOS A,MROZOVA Z,THEVENIEAU F,et al.Control of lipid accumulation in the yeast Yarrowia lipolytica[J].Appl Environ Microbiol,2008,74(24):7779-7789.
[43] WANG J,ZHANG B,CHEN S.Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid[J].Process Biochem,2011,46(7):1436-1441.
[44] RIGOUIN C,GU?ROULT M,CROUX C,et al.Production of medium chain fatty acids by Yarrowia lipolytica:combining molecular design and TALEN to engineer the fatty acid synthase[J].ACS Synth Biol,2017,6(10):1870-1879.
[45] WANG W,WEI H,KNOSHAUG E,et al.Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica[J].Biotechnol Biofuels,2016,9(1):227.
[46] BLAZECK J,LIU L,KNIGHT R,et al.Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica[J].J Biotechnol,2013,165(3):184-194.
[47] XU P,QIAO K,AHN W S,et al.EngineeringYarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals[J].Proc Natl Acad Sci USA,2016,113(39):10848-10853.
[48] IWAMA R,KOBAYASHI S,OHTA A,et al.Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica[J].J Biol Chem,2014,289(48):33275-33286.
[49] TENAGY,PARK J S,IWAMA R,et al.Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica[J].FEMS Yeast Res,2015,15(4):fov031.
[50] FUKUDA R.Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica[J].Biosci Biotechnol Biochem,2013,77(6):1149-1154.
[51] BEOPOULOS A,CESCUT J,HADDOUCHE R,et al.Yarrowia lipolytica as a model for bio-oil production[J].Prog Lipid Res,2009,48(6):375-387.
[52] BOMMAREDDY R R,SABRA W,MAHESHWARI G,et al.Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates[J].Microb Cell Fact,2015,14(1):36.
[53] SARAN S,MATHUR A,DALAL J,et al.Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29[J].Fuel,2017,188:324-331.
[54] ZHANG S,SKERKER J M,RUTTER C D,et al.Engineering Rhodosporidium toruloides for increased lipid production[J].Biotechnol Bioeng,2016,113(5):1056-106.
[55] ZHANG S,ITO M,SKERKER J M,et al.Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation[J].Appl Microbiol Biotechnol,2016,100(21):9393-9405.
[56] 沈宏伟,靳国杰,胡翠敏,等.恒化培养稀释率和碳氮比对圆红冬孢酵母油脂积累的影响[J].生物工程学报,2012,28(1):56-64.
[57] 李永红,刘波,赵宗保,等.圆红冬孢酵母菌发酵产油脂培养基及发酵条件的优化研究[J].生物工程学报,2006,22(4):650-656.
[58] YANG X,JIN G,GONG Z,et al.Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process[J].Biochem Eng J,2014,91:86-91.
[59] ZHANG C,SHEN H,ZHANG X,et al.Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids[J].Biotechnol Lett,2016,38(10):1733-1738.
[60] JIN G,ZHANG Y,SHEN H,et al.Fatty acid ethyl esters production in aqueous phase by the oleaginous yeast Rhodosporidium toruloides[J].Bioresour Technol,2013,150:266-270.
[61] ZHU Z,ZHANG S,LIU H,et al.A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides[J].Nat Commun,2012,3:1112.
[62] LIU H,JIAO X,WANG Y,et al.Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation[J].FEMS Yeast Res,2017,17(2):fox017.
[63] LIAN J,ZHAO H.Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites[J].J Ind Microbiol Biotechnol,2015,42(3):437-451.
[64] GUO Z,ZHANG L,DING Z,et al.Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance[J].Metab Eng,2011,13(1):49-59.
[65] VERHO R,LONDESBOROUGH J,PENTTIL? M,et al.Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,2003,69(10):5892-5897.
[66] TEO W S,HEE K S,CHANG M W.Bacterial FadR and synthetic promoters function as modular fatty acid sensor-regulators in Saccharomyces cerevisiae[J].Eng Life Sci,2013,13(5):456-463.
[67] TEO W S,CHANG M W.Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae[J].Biotechnol Bioeng,2014,111(1):144-151.
[68] AVALOS J L,FINK G R,STEPHANOPOULOS G.Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J].Nat Biotechnol,2013,31(4):335-341.
[69] ROTTENSTEINER H,THEODOULOU F L.The ins and outs of peroxisomes:co-ordination of membrane transport and peroxisomal metabolism[J].Biochim Biophys Acta,2006,1763(12):1527-1540.
[70] ZHOU Y J,BUIJS N A,ZHU Z,et al.Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition[J].J Am Chem Soc,2016,138(47):15368-15377.
[71] SHENG J,STEVENS J,FENG X.Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols[J].Sci Rep,2016,6:26884.
[72] SHIBA Y,PARADISE E M,KIRBY J,et al.Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J].Metab Eng,2007,9(2):160-168.
[73] KOZAK B U,VAN ROSSUM H M,BENJAMIN K R,et al.Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis[J].Metab Eng,2014,21:46-59.
[74] KOZAK B U,VAN ROSSUM H M,LUTTIKM A,et al.Engineering acetyl coenzyme A supply:functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae[J].Mbio,2014,5(5):e01696-14.
[75] KOCHARIN K,SIEWERS V,NIELSEN J.Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway[J].Biotechnol Bioeng,2013,110(8):2216-2224.
[76] GUO Z,ZHANG L,DING Z,et al.Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance[J].Metab Eng,2011,13:49-59.

相似文献/References:

[1]朱永强,薛飞燕,邢旭,等.粘红酵母和酿酒酵母联合处理味精废水[J].生物加工过程,2010,8(05):17.[doi:doi:10.3969/j.issn.1672-3678.2010.05.004]
 ZHU Yong-qiang,XUE Fei-yan,XING Xu,et al.Treatment of monosodium glutamate wastewater by Rhodotorula glutinis and Saccharomyces cerevisiae[J].Chinese Journal of Bioprocess Engineering,2010,8(01):17.[doi:doi:10.3969/j.issn.1672-3678.2010.05.004]
[2]陈丽杰,白凤武,WA Anderson,等.超高浓度培养基条件下酵母细胞生长及酒精生成的准稳态动力学研究[J].生物加工过程,2004,2(02):25.[doi:10.3969/j.issn.1672-3678.2004.02.005]
[3]王峥,谭天伟,温少红.谷胱甘肽发酵过程中的乙醇控制[J].生物加工过程,2004,2(02):64.[doi:10.3969/j.issn.1672-3678.2004.02.013]
[4]侯进,沈煜,鲍晓明.木糖异构酶在酿酒酵母表面表达及对木糖代谢影响的初步研究[J].生物加工过程,2006,4(01):30.[doi:10.3969/j.issn.1672-3678.2006.01.007]
 HOU Jin,SHEN Yu,BAO Xiao-ming.Expression xylose isomerase on Saccharomyces cerevisiae cell surface and its influence on xylose metabolism[J].Chinese Journal of Bioprocess Engineering,2006,4(01):30.[doi:10.3969/j.issn.1672-3678.2006.01.007]
[5]曹丹燕,李艳,张清,等.酿酒酵母CICC1747醛糖还原酶基因的克隆及表达[J].生物加工过程,2006,4(02):46.[doi:10.3969/j.issn.1672-3678.2006.02.010]
 CAO Dan-yan,LI Yan,ZHANG Qing,et al.Cloning and expression of the S. cerevisiae CICC1747 aldose reductase gene[J].Chinese Journal of Bioprocess Engineering,2006,4(01):46.[doi:10.3969/j.issn.1672-3678.2006.02.010]
[6]李永建,严明,丁莉,等.在酿酒酵母中共表达XYLA和XKS1基因后利用木糖的初步研究[J].生物加工过程,2006,4(04):65.[doi:10.3969/j.issn.1672-3678.2006.04.014]
 LI Yong-jian,YAN Ming,DING Li,et al.Construction of Saccharomyces cerevisiae expressing XYLA and XKS1 and study on the effect of the xylose utilization[J].Chinese Journal of Bioprocess Engineering,2006,4(01):65.[doi:10.3969/j.issn.1672-3678.2006.04.014]
[7]许兵,应汉杰,姚月兰,等.PAG-OA衍生物Ⅰ5对酿酒酵母转化合成ATP的影响[J].生物加工过程,2007,5(04):76.[doi:10.3969/j.issn.1672-3678.2007.04.015]
 XU Bing,YING Han-jie,YAO Yue-lan,et al.Effect of polyoxyalkylene glycols-oleic acid derivative I 5 on activity of Saccharomyces cerevisiae of ATP production[J].Chinese Journal of Bioprocess Engineering,2007,5(01):76.[doi:10.3969/j.issn.1672-3678.2007.04.015]
[8]姚进孝,刘沛溢,谭天伟.热水提取酿酒酵母中S-腺苷-L-甲硫氨酸的研究[J].生物加工过程,2008,6(01):74.[doi:10.3969/j.issn.1672-3678.2008.01.016]
 YAO Jin-xiao,LIU Pei-yi,TAN Tian-wei.Using hot water to extract S -adenosyl- L -methionine from Saccharomyces cerevisiae[J].Chinese Journal of Bioprocess Engineering,2008,6(01):74.[doi:10.3969/j.issn.1672-3678.2008.01.016]
[9]顾春银,张震宇.利用蛋白标签纯化酿酒酵母RAVE-V1复合物[J].生物加工过程,2014,12(05):34.[doi:10.3969/j.issn.1672-3678.2014.05.006]
 GU Chunyin,ZHANG Zhenyu.Purification of RAVE-V1 complex from Saccharomyces cerevisiae via protein tagging[J].Chinese Journal of Bioprocess Engineering,2014,12(01):34.[doi:10.3969/j.issn.1672-3678.2014.05.006]
[10]万春,万青青,熊亮,等.过表达MRP8提高酿酒酵母乙酸耐性及乙醇发酵效率[J].生物加工过程,2017,15(05):80.[doi:10.3969/j.issn.1672-3678.2017.05.010]
 WAN Chun,WAN Qingqing,XIONG Liang,et al.Improvement of acetic acid tolerance of Saccharomyces cerevisiae by overexpression of mitochondrial ribosomal protein encoding gene MRP8 for efficient lignocellulosic ethanol production[J].Chinese Journal of Bioprocess Engineering,2017,15(01):80.[doi:10.3969/j.issn.1672-3678.2017.05.010]

备注/Memo

备注/Memo:
收稿日期:2017-09-25修回日期:2017-10-27
基金项目:中国科学院大连化学物理研究所创新基金
作者简介:高教琪(1989—),男,辽宁抚顺人,助理研究员,研究方向:酵母合成生物学、生物质能源; 周雍进(联系人),博士,课题组长,E-mail:zhouyongjin@dicp.ac.cn
引文格式:高教琪,段兴鹏,周雍进.酵母细胞工厂生产脂肪酸及其衍生物[J].生物加工过程,2018,16(1):19-30.
GAO Jiaoqi,DUAN Xingpeng,ZHOU Yongjin.Production of fatty acids and their derivatives by yeast cell factories[J].Chin J Bioprocess Eng,2018,16(1):19-30..
更新日期/Last Update: 2018-01-30