|本期目录/Table of Contents|

[1]杨祖明,李炳志.代谢工程技术方法研究进展[J].生物加工过程,2018,16(01):1-11.[doi:10.3969/j.issn.1672-3678.2018.01.001]
 YANG Zuming,LI Bingzhi.Advance in metabolic engineering technologies and methods[J].Chinese Journal of Bioprocess Engineering,2018,16(01):1-11.[doi:10.3969/j.issn.1672-3678.2018.01.001]
点击复制

代谢工程技术方法研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年01期
页码:
1-11
栏目:
出版日期:
2018-01-30

文章信息/Info

Title:
Advance in metabolic engineering technologies and methods
文章编号:
1672-3678(2018)01-0001-11
作者:
杨祖明12李炳志12
1. 天津大学 系统生物工程教育部重点实验室,天津 300072; 2. 天津大学 化工学院 天津化学化工协同创新中心,天津 300072
Author(s):
YANG Zuming12LI Bingzhi12
1.Key Laboratory of Systems Bioengineering of the Ministry of Education,Tianjin University,Tianjin 300072,China; 2.Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
关键词:
代谢工程 合成生物学 代谢网络分析 途径酶共定位
分类号:
Q81
DOI:
10.3969/j.issn.1672-3678.2018.01.001
文献标志码:
A
摘要:
代谢工程技术是构建微生物细胞工厂的重要方法。过去20年,代谢工程技术在生产高附加值生物活性物质和大宗商业化学品等方面被广泛应用,极大地推动了医药、能源、环境等行业的技术变革和高速发展。近些年来,随着合成生物学、分子生物学以及计算机科学等相关学科技术的发展,代谢工程在代谢网络分析、提高菌株性能、途径酶的共定位表达等方面呈现许多新的发展,本文对这些技术方法的研究和应用进行了概述。

参考文献/References:

[1] PADDON C J,KEASLING J D.Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J].Nat Rev Microbiol,2014,12(5):355-367.
[2] CHEN Y,XIAO W,WANG Y,et al.Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J].Microb Cell Fact,2016,15(1):113.
[3] BARTON N R,BURGARD A P,BURK M J,et al.An integrated biotechnology platform for developing sustainable chemical processes[J].J Ind Microbiol Biotechnol,2015,42(3):349-360.
[4] WOOLSTON B M,EDGAR S,STEPHANOPOULOS G.Metabolic engineering:past and future[J].Annu Rev Chem Biomol Eng,2013,4:259-288.
[5] GHOSH A,ANDO D,GIN J,et al.13C metabolic flux analysis for systematic metabolic engineering of S.cerevisiae for overproduction of fatty acids[J].Front Bioeng Biotechnol,2016,4:76.
[6] SCHMIDT K,NIELSEN J,VILLADSEN J.Quantitative analysis of metabolic fluxes in Escherichia coli,using two-dimensional NMR spectroscopy and complete isotopomer models[J].J Biotechnol,1999,71(1):175-189.
[7] ANTONIEWICZ M R,KELLEHER J K,STEPHANOPOULOS G.Elementary metabolite units(EMU):a novel framework for modeling isotopic distributions[J].Metab Eng,2007,9(1):68-86.
[8] CINTOLESI A,CLOMBURG J M,RIGOU V,et al.Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli[J].Biotechnol Bioeng,2012,109(1):187-198.
[9] GONZ?LEZ R.Metabolic engineering:use of system-level approaches and application to fuel production in Escherichia coli [J].Electron J Biotechnol,2013,16(3):1-13.
[10] PRICE N D,PAPIN J A,SCHILLING C H,et al.Genome-scale microbial in silico models:the constraints-based approach[J].Trends Biotechnol,2003,21(4):162-169.
[11] LEE S Y,PARK J M,KIM T Y.4 Application of metabolic flux analysis in metabolic engineering[J].Methods Enzymol,2011,498:67.
[12] FEIST A M,HENRY C S,REED J L,et al.A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information[J].Mol Syst Biol,2007,3(1):121.
[13] ALPER H,JIN Y S,MOXLEY J,et al.Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli[J].Metab Eng,2005,7(3):155-164.
[14] SIMEONIDIS E,PRICE N D.Genome-scale modeling for metabolic engineering[J].J Ind Microbiol Biotechnol,2015,42(3):327-338.
[15] BURGARD A P,PHARKYA P,MARANAS C D.Optknock:a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[J].Biotechnol Bioeng,2003,84(6):647-657.
[16] PATIL K R,ROCHA I,F RSTER J,et al.Evolutionary programming as a platform for in silico metabolic engineering[J].BMC Bioinf,2005,6(1):308.
[17] TEPPER N,SHLOMI T.Predicting metabolic engineering knockout strategies for chemical production:accounting for competing pathways[J].Bioinformatics,2010,26(4):536-543.
[18] 李桂莹,张新波,王智文,等.逆向代谢工程的最新研究进展[J].生物工程学报,2014,30(8):1151-1163.
[19] SKRETAS G,KOLISIS F N.Combinatorial approaches for inverse metabolic engineering applications[J].Comput Struct Biotechnol J,2012,3:e201210021.
[20] YOMANO L,YORK S,INGRAM L.Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production[J].J Ind Microbiol Biotechnol,1998,20(2):132-138.
[21] ATSUMI S,WU T Y,MACHADO I M,et al.Evolution,genomic analysis,and reconstruction of isobutanol tolerance in Escherichia coli[J].Mol Syst Biol,2010,6(1):449.
[22] HONG K K,VONGSANGNAK W,VEMURI G N,et al.Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis[J].Proc Natl Acad Sci USA,2011,108(29):12179-12184.
[23] SCALCINATI G,OTERO J M,VAN VLEET J R,et al.Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption[J].FEMS Yeast Res,2012,12(5):582-597.
[24] UTRILLA J,LICONA-CASSANI C,MARCELLIN E,et al.Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter[J].Metab Eng,2012,14(5):469-476.
[25] XU Z,WANG Y,CHATER K F,et al.Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis[J].Appl Environ Microbiol,2017,83(6):e02889-16.
[26] T?NNLER S,ZAMBONI N,KIRALY C,et al.Screening of Bacillus subtilis transposon mutants with altered riboflavin production[J].Metab Eng,2008,10(5):216-226.
[27] ?ZAYD?N B,BURD H,LEE T S,et al.Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J].Metab Eng,2013,15:174-183.
[28] 乔志新,于群.全局转录调控及其在代谢工程中的应用[J].生物技术通讯,2009,20(5):689-691.
[29] ALPER H,STEPHANOPOULOS G.Global transcription machinery engineering:a new approach for improving cellular phenotype[J].Metab Eng,2007,9(3):258-267.
[30] BROWN R S.Zinc finger proteins:getting a grip on RNA[J].Curr Opin Struct Biol,2005,15(1):94-98.
[31] 赵心清,姜如娇,白凤武.启动子和细胞全局转录机制的定向进化在微生物代谢工程中的应用[J].生物工程学报,2009,25(9):1312-1315.
[32] PARK K S,DONG-KI L,LEE H,et al.Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors[J].Nat Biotechnol,2003,21(10):1208-1214.
[33] PARK K S,SEOL W,YANG H Y,et al.Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells[J].Biotechnol Prog,2005,21(3):664-670.
[34] TANAKA Y,KASAHARA K,HIROSE Y,et al.Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance[J].J Biosci Bioeng,2017,124(4):400-407.
[35] LI J,NAYAK S,MRKSICH M.Rate enhancement of an interfacial biochemical reaction through localization of substrate and enzyme by an adaptor domain[J].J Phys Chem B,2010,114(46):15113-15118.
[36] WRIGGERS W,CHAKRAVARTY S,JENNINGS P A.Control of protein functional dynamics by peptide linkers[J].Peptide Sci,2005,80(6):736-746.
[37] ZHANG Y,LI S Z,LI J,et al.Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells[J].J Am Chem Soc,2006,128(40):13030-13031.
[38] WANG Y,YI H,WANG M,et al.Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase[J].J Am Chem Soc,2011,133(51):20684-20687.
[39] DUEBER J E,WU G C,MALMIRCHEGINI G R,et al.Synthetic protein scaffolds provide modular control over metabolic flux[J].Nat Biotechnol,2009,27(8):753-759.
[40] MOON T S,DUEBER J E,SHIUE E,et al.Use of modular,synthetic scaffolds for improved production of glucaric acid in engineered E.coli[J].Metab Eng,2010,12(3):298-305.
[41] HIRAKAWA H,NAGAMUNE T.Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA[J].ChemBioChem,2010,11(11):1517-1520.
[42] PARK S H,ZARRINPAR A,LIM W A.Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms[J].Science,2003,299:1061-1064.
[43] AVALOS J L,FINK G R,STEPHANOPOULOS G.Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J].Nat Biotechnol,2013,31(4):335-341.
[44] SZCZEBARA F M,CHANDELIER C,VILLERET C,et al.Total biosynthesis of hydrocortisone from a simple carbon source in yeast[J].Nat Biotechnol,2003,21(2):143-149.
[45] FARHI M,MARHEVKA E,MASCI T,et al.Harnessing yeast subcellular compartments for the production of plant terpenoids[J].Metab Eng,2011,13(5):474-481.
[46] LV X,WANG F,ZHOU P,et al.Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J].Nat Commun,2016,7:12851.
[47] CHEN X,DONG X,WANG Y,et al.Mitochondrial engineering of the TCA cycle for fumarate production[J].Metab Eng,2015,31:62-73.
[48] GIDIJALA L,KIEL J A,DOUMA R D,et al.An engineered yeast efficiently secreting penicillin[J].PLoS ONE,2009,4(12):e8317.
[49] LEE P C,GEOL YOON Y,SCHMIDT-DANNERT C.Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris[J].J Biotechnol,2009,140(3):227-233.
[50] CHEN L,ZHANG J,CHEN W N.Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel[J].PLoS ONE,2014,9(1):e84853.
[51] SHENG J,STEVENS J,FENG X.Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols[J].Sci Rep,2016,6:26884.
[52] BAYER T S,WIDMAIER D M,TEMME K,et al.Synthesis of methyl halides from biomass using engineered microbes[J].J Am Chem Soc,2009,131(18):6508-6515.
[53] THODEY K,GALANIE S,SMOLKE C D.A microbial biomanufacturing platform for natural and semisynthetic opioids[J].Nat Chem Biol,2014,10(10):837-844.
[54] 王俊姝,祁庆生.合成生物学与代谢工程[J].生物工程学报,2009,25(9):1296-1302.
[55] P?SFAI G,PLUNKETT G,FEH?R T,et al.Emergent properties of reduced-genome Escherichia coli[J].Science,2006,312:1044-1046.
[56] WU Y,LI B Z,ZHAO M,et al.Bug mapping and fitness testing of chemically synthesized chromosome X[J].Science,2017,355:eaaf4706.
[57] HANAI T,ATSUMI S,LIAO J.Engineered synthetic pathway for isopropanol production in Escherichia coli[J].Appl Environ Microbiol,2007,73(24):7814-7818.
[58] YIM H,HASELBECK R,NIU W,et al.Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J].Nat Chem Biol,2011,7(7):445-452.
[59] ZHANG F,CAROTHERS J M,KEASLING J D.Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J].Nat Biotechnol,2012,30(4):354-359.
[60] CHAKRAVARTY S,BARIK D.Steady state statistical correlations predict bistability in reaction motifs[J].Mol Biosyst,2017,13(4):775-784.
[61] LI Z,LIU S,YANG Q.Incoherent inputs enhance the robustness of biological oscillators[J].Cell Syst,2017,5(1):72-81.e4.
[62] NISTALA G J,WU K,RAO C V,et al.A modular positive feedback-based gene amplifier[J].J Biol Eng,2010,4(1):4.
[63] DANIEL R,RUBENS J R,SARPESHKAR R,et al.Synthetic analog computation in living cells[J].Nature,2013,497:619-623.
[64] CHEN X,GAO C,GUO L,et al.DCEO biotechnology:tools to design,construct,evaluate,and optimize the metabolic pathway for biosynthesis of chemicals[J].Chem Rev,2017,doi:10.1021/acs.chemrev.6b00804.
[65] NA D,YOO S M,CHUNG H,et al.Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J].Nat Biotechnol,2013,31(2):170-174.
[66] AJIKUMAR P K,XIAO W H,TYO K E,et al.Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J].Science,2010,330:70-74.
[67] LO T M,TEO W S,LING H,et al.Microbial engineering strategies to improve cell viability for biochemical production[J].Biotechnol Adv,2013,31(6):903-914.
[68] YADAV V G,DE MEY M,LIM C G,et al.The future of metabolic engineering and synthetic biology:towards a systematic practice[J].Metab Eng,2012,14(3):233-241.
[69] LIU Y,ZHU Y,LI J,et al.Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J].Metab Eng,2014,2(3):42-52.
[70] KORMAN T P,OPGENORTH P H,BOWIE J U.A synthetic biochemistry platform for cell free production of monoterpenes from glucose[J].Nat Commun,2017,8:15526.

相似文献/References:

[1]赵学明,王靖宇,陈涛,等.后基因组时代的代谢工程:机遇与挑战[J].生物加工过程,2004,2(02):1.[doi:10.3969/j.issn.1672-3678.2004.02.001]
[2]贾红华,韦萍,何冰芳.L-苯丙氨酸生产的代谢工程研究[J].生物加工过程,2004,2(02):8.[doi:10.3969/j.issn.1672-3678.2004.02.002]
[3]谢承佳,何冰芳,李霜.基因敲除技术及其在微生物代谢工程方面的应用[J].生物加工过程,2007,5(03):10.[doi:10.3969/j.issn.1672-3678.2007.03.003]
 XIE Cheng-jia,HE Bing-fang,LI Shuang.Gene knockout and its applications in microbe metabolic engineering[J].Chinese Journal of Bioprocess Engineering,2007,5(01):10.[doi:10.3969/j.issn.1672-3678.2007.03.003]
[4]陈修来,高聪,刘佳,等.微生物代谢路径的优化与调控[J].生物加工过程,2017,15(05):1.[doi:10.3969/j.issn.1672-3678.2017.05.001]
 CHEN Xiulai,GAO Cong,LIU Jia,et al.Optimization and regulation of microbial metabolic pathways[J].Chinese Journal of Bioprocess Engineering,2017,15(01):1.[doi:10.3969/j.issn.1672-3678.2017.05.001]
[5]邵洁,李建华,王凯博,等.植物底盘:天然产物合成生物学研究的新热点[J].生物加工过程,2017,15(05):24.[doi:10.3969/j.issn.1672-3678.2017.05.003]
 SHAO Jie,LI Jianhua,WANG Kaibo,et al.Plant chassis:new hotspots of natural product synthetic biology[J].Chinese Journal of Bioprocess Engineering,2017,15(01):24.[doi:10.3969/j.issn.1672-3678.2017.05.003]
[6]庄倩倩.大肠杆菌利用合成生物学策略生产聚羟基脂肪酸酯的研究进展[J].生物加工过程,2017,15(06):38.[doi:10.3969/j.issn.1672-3678.2017.06.006]
 ZHUANG Qianqian.Progress in synthetic biology of Escherichia coli to produce polyhydroxyalkanoates[J].Chinese Journal of Bioprocess Engineering,2017,15(01):38.[doi:10.3969/j.issn.1672-3678.2017.06.006]
[7]高教琪,段兴鹏,周雍进.酵母细胞工厂生产脂肪酸及其衍生物[J].生物加工过程,2018,16(01):19.[doi:10.3969/j.issn.1672-3678.2018.01.003]
 GAO Jiaoqi,DUAN Xingpeng,ZHOU Yongjin.Production of fatty acids and their derivatives by yeast cell factories[J].Chinese Journal of Bioprocess Engineering,2018,16(01):19.[doi:10.3969/j.issn.1672-3678.2018.01.003]
[8]王崇龙,曹智钦,覃小华,等.大肠杆菌微细胞工厂生产萜类化合物研究进展[J].生物加工过程,2019,17(01):1.[doi:10.3969/j.issn.1672-3678.2019.01.001]
 WANG Chonglong,CAO Zhiqin,QIN Xiaohua,et al.A perspective:engineering of Escherichia coli as a microbial cell factory for terpenoids production[J].Chinese Journal of Bioprocess Engineering,2019,17(01):1.[doi:10.3969/j.issn.1672-3678.2019.01.001]
[9]王培霞,马渊,吴毅.大DNA体内组装技术进展[J].生物加工过程,2019,17(01):15.[doi:10.3969/j.issn.1672-3678.2019.01.003]
 WANG Peixia,MA Yuan,WU Yi.Advances in large DNA in vivo assembly[J].Chinese Journal of Bioprocess Engineering,2019,17(01):15.[doi:10.3969/j.issn.1672-3678.2019.01.003]

备注/Memo

备注/Memo:
收稿日期:2017-09-30修回日期:2017-11-14
基金项目:国家自然科学基金(21622605); 天津市科技计划(13RCGFSY19800))
作者简介:杨祖明(1993—),男,河南光山人,硕士研究生,研究方向:合成生物学; 李炳志(联系人),教授,E-mail:bzli@tju.edu.cn
引文格式:杨祖明,李炳志.代谢工程技术方法研究进展[J].生物加工过程,2018,16(1):1-11.
YANG Zuming,LI Bingzhi.Advance in metabolic engineering technologies and methods[J].Chin J Bioprocess Eng,2018,16(1):1-11..
更新日期/Last Update: 2018-01-30