|本期目录/Table of Contents|

[1]张松平,王平.化学修饰--提高酶催化性能的重要工具[J].生物加工过程,2006,4(01):4.[doi:10.3969/j.issn.1672-3678.2006.01.002]
 ZHANG Song-ping,WANG Ping.Chemical modification of enzymes- an important tool to enhance the performance of biocatalysts[J].Chinese Journal of Bioprocess Engineering,2006,4(01):4.[doi:10.3969/j.issn.1672-3678.2006.01.002]
点击复制

化学修饰--提高酶催化性能的重要工具()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
4
期数:
2006年01期
页码:
4
栏目:
出版日期:
2006-02-28

文章信息/Info

Title:
Chemical modification of enzymes- an important tool to enhance the performance of biocatalysts
作者:
张松平王平
中国科学院过程工程研究所, 生化工程国家重点实验室, 北京, 100080
Author(s):
ZHANG Song-ping WANG Ping
关键词:
化学修饰酶稳定性非水相生物催化定点突变辅因子重构
分类号:
Q814
DOI:
10.3969/j.issn.1672-3678.2006.01.002
摘要:
讨论了化学修饰对酶的稳定性、有机溶剂溶解性、特殊条件下的活性和选择性的影响.对常见的和近期出现的酶修饰技术,包括交联酶晶体、酶蛋白侧链功能基共价修饰、酶蛋白表面修饰、结合定点突变的化学修饰、通过酶活性位点氨基酸原子置换进行化学突变等方法作了重点阐述.

参考文献/References:

[1] DeSantis G, Jones JB. Chemical modification of enzymes for enhances functionality [J]. Current Opinion in Biotechnology, 1999, (4):324-330.doi:10.1016/S0958-1669(99)80059-7.
[2] 林章凛, 曹竹安, 刑新会. 工业生物催化技术 [J]. 生物加工过程, 2003(1):12-16.doi:10.3969/j.issn.1672-3678.2003.01.006.
[3] 孙志浩, 柳志强. 酶的定向进化及其应用 [J]. 生物加工过程, 2005(3):7-13.doi:10.3969/j.issn.1672-3678.2005.03.002.
[4] Davis BG. Chemical modification of biocatalysts [J]. Current Opinion in Biotechnology, 2003, (4):379-386.doi:10.1016/S0958-1669(03)00098-3.
[5] Govardhan CP. Crosslingking of enzymes for improved stability and performance [J]. Current Opinion in Biotechnology, 1999, (4):331-335.doi:10.1016/S0958-1669(99)80060-3.
[6] Gu QM, SIH CJ. Improving the enantioselectivity of the Candida Cylindracea lipase via chemical modification [J]. Biocatalysis, 1992.115-126.
[7] Kodera Y, Matsushima A, Hiroto M. Pegylation of proteins and bioactive substances for medical and technical applications [J]. Progress in Polymer Science, 1998.1233-1271.doi:10.1016/S0079-6700(97)00033-6.
[8] DeSantis G, Berglund P, Stabile MR. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1’ pockets of subtilisin Bacillus lentus [J]. Biochemistry, 1998.5968-5973.doi:10.1021/bi9727951.
[9] Tann CM, Qi DF, Distefano MD. Enzyme design by chemical modification of protein scaffolds [J]. Current Opinion in Chemical Biology, 2001, (6):696-704.doi:10.1016/S1367-5931(01)00268-X.
[10] Klibanov AM. Approaches to enzymes stabilization [J]. Biochemical Society Transactions, 1983.19-20.
[11] ó’Fàgàin C. Review:Enzyme stabilization-recent experimental progress [J]. Enzyme and Microbial Technology, 2003, (2/3):137-149.doi:10.1016/S0141-0229(03)00160-1.
[12] Venkatesh R, Sundaram PV. Modulation of stability properties of bovine trypsin after in vitro structural changes with variety of chemical modifiers [J]. Protein Engineering, 1998, (8):691-698.doi:10.1093/protein/11.8.691.
[13] Persichetti RA, St Clair N, Griffith JP. Crosslinked crystals of thermolysin in the synthesis of peptides [J]. Journal of the American Chemical Society, 1995, (10):2732-2737.doi:10.1021/ja00115a008.
[14] Wang YF, Yakovlevsky K, Margolin AL. An efficient synthesis of chiral amino acid and peptide alkylamides via CLEC-subtilisin catalyzed coupling and in situ resolution [J]. Tetrahedron Letters, 1996.5317-5320.doi:10.1016/0040-4039(96)01119-7.
[15] BaustTimpson M, SeuferWasserthal P. CLECs:robust and efficient biocatalysts for fine chemical and pharmaceutical manufacturing [J]. Speciality Chemicals, 1998.248-251.
[16] Vilenchik LZ, Griffith JP, St Clair N. Protein crystals as novel microporous materials [J]. Journal of the American Chemical Society, 1998, (18):4290-4294.doi:10.1021/ja973449+.
[17] Matthews BW. Solvent content of protein crystals [J]. Journal of Molecular Biology, 1968.491-497.doi:10.1016/0022-2836(68)90205-2.
[18] Kazan D, Ertan H, Erarslan A. Stability of E.coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers [J]. Applied Microbiology and Biotechnology, 1977, (2):191-197.doi:10.1007/s002530051037.
[19] Bieniarz C, Cornwell MJ, Young DF. Alkaline phosphatase activatable crosslinkers and their use in the stability of proteins [J]. Bioconjugate Chemistry, 1998.390-398.doi:10.1021/bc9800264.
[20] Villalonga R, Cómez L, Ramirez HL. Stabilization of α-amylase by chemical modification with carboxymethylcellulose [J]. Journal of Chemical Technology and Biotechnology, 1999.635-638.
[21] Longo MA, Combes D. Thermostablility of modified enzymes:a detailed study [J]. Journal of Chemical Technology and Biotechnology, 1999, (1):25-32.doi:10.1002/(SICI)1097-4660(199901)74:1<25::AID-JCTB978>3.0.CO;2-B.
[22] Vinogradov AA, Kudryashova EV, Grinberg VYa. The chemical modification of α-chymotrypsin with both hydrophobic and hydrophilic compounds stabilizes the enzyme against denaturation in water-organic media [J]. Protein Engineering, 2001.683-689.doi:10.1093/protein/14.9.683.
[23] Mozhaev VV, Melik-Nubarov NS, Levitsky VYU. High stability to irreversible inactivation at elevated temperatures of enzymes covalently modified by hydrophilic reagents:α-Chymotrypsin [J]. Biotechnology and Bioengineering, 1992.650-662.doi:10.1002/bit.260400603.
[24] Wang P, Woodward CA, Kaufman EN. Poly (ethylene glycol)-modified ligninase enhances pentachlorophenol biodegradation in water-solvent mixtures [J]. Biotechnology and Bioengineering, 1999.290-297.
[25] Cómez L, Ramirez HL, Villalonga R. Stabilization of invertase by modification of sugar chains with chitosan [J]. Biotechnology Letters, 2000, (5):347-350.doi:10.1023/A:1005664432575.
[26] Cómez L, Villalonga R. Functional stabilization of invertase by covalent modification with pectin [J]. Biotechnology Letters, 2000, (14):1191-1195.doi:10.1023/A:1005645531521.
[27] Wang P, Sergueeva MS, Lim L. Biocatalytic plastics as active and stable materials for biotransformations [J]. Nature Biotechnology, 1997.789-793.doi:10.1038/nbt0897-789.
[28] Peters R, Sikorski R. Just one word:plastics [J]. Science, 1997.18-49.
[29] Zaks A, Klibanov AM. Enzymatic catalysis in organic media at 100 ℃ [J]. Science, 1984.1249-1251.doi:10.1126/science.6729453.
[30] Takahashi K, Ajima A, Yoshimoto T. Polyethylene glycol-modified catalase exhibits unexpectedly high activity in benzene [J]. Biochemical and Biophysical Research Communications, 1984.761-766.doi:10.1016/0006-291X(84)90604-1.
[31] Inada Y, Furukawa M, Sasaki H. Biomedical and biotechnological applications of PEG-and PM-modified proteins [J]. Trends in Biotechnology, 1995, (3):86-91.doi:10.1016/S0167-7799(00)88912-X.
[32] Matsushima A, Kodera Y, Hiroto M. Bioconjugates of proteins and polyethylene glycol:potent tools in biotechnological processes [J]. Journal of Molecular Catalysis B:Enzymatic, 1996.1-17.
[33] Jene Q, Pearson JC, Lowe CR. Surfactant modified enzymes:solubility and activity of surfactant-modified catalaso in organic solvents [J]. Enzyme and Microbial Technology, 1997.69-74.doi:10.1016/S0141-0229(96)00086-5.
[34] Distel K, Zhu GY, Wang P. Biocatalysis using an organic-soluble enzyme for the preparation of poly (lactic acid) in organic solvents [J]. Bioresource Technology, 2005, (5):617-623.doi:10.1016/j.biortech.2004.06.005.
[35] Naka K, Yamashita R, Nakamura T. Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent [J]. International Journal of Biological Macromolecules, 1998, (4):259-262.doi:10.1016/S0141-8130(98)00055-5.
[36] Zhu GY, Wang P. Polymer-enzyme conjugates can self-assemble at oilwater interfaces and effect interfacial biotransformation [J]. Journal of the American Chemical Society, 2004.11132-11133.doi:10.1021/ja046853z.
[37] Wang L, Zhu G, Wang P. Self-assembling of polymer-enzyme conjugates at oil/water interfaces [J]. Biotechnology Progress, 2005.1321-1328.
[38] Zhu GY, Wang P. Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene [J]. Journal of Biotechnology, 2005, (2):195-202.doi:10.1016/j.jbiotec.2005.01.015.
[39] Asuri P, Karajanagi SS, Dordick JS. Directed assembly of carbon nanotubes at liquid-liquid interfaces:nanoscale conveyors for interfacial biocatalysis [J]. Journal of the American Chemical Society, 2006.3965.
[40] Fadnavis NW, Babu RL, Vadivel SK. Lipase catalyzed regio-and sterospecific hydrolysis:chemoenzymatic synthesis of both (R)-and (S)-enantiomers of α-lipoic acid [J]. Tetrahedron:Asymmetry, 1998, (23):4109-4112.
[41] Ueji S, Tanaka H, Hanaoka T. Effects of chemical modification of lipase on its enantioselectivity in organic solvents [J]. Chemistry Letters, 2001, (10):1066-1077.doi:10.1246/cl.2001.1066.
[42] Khumtaveeporn K, Ullmann A, Matsumoto K. Expanding the utility of protease in synthesis:broadening the substrate acceptance in noncoded amide bond formation using chemically modified mutant of subtilisin [J]. Tetrahedron:Asymmetry, 2001, (2):249-261.doi:10.1016/S0957-4166(01)00024-6.
[43] Dickman M, Lloyd RC, Jones JB. Chemical modified mutants of subtilisin Bacillus lentus.Catalyze transesterification reactions better than wild type [J]. Tetrahedron:Asymmetry, 1998.4009-4102.
[44] Matsumoto K, Davis BG, Jones JB. Glycosylation of the primary binding pocket of a subtilisin protease causes a remarkable broadening in stereospecificity in peptide synthesis [J]. Chemical Communications, 2001.903-904.
[45] Neet KE, Koshland DEJr. The conversion of serine at the active site of subtilisin to cysteine:a’ chemical mutation’ [J]. Proceedings of the National Academy of Sciences of the United States of America, 1966.1606-1611.
[46] Polgar L, Bender ML. A new enzyme containing a synthetically formed active site.Thiol-subtilisin [J]. Journal of the American Chemical Society, 1966.3153-3154.doi:10.1021/ja00965a060.
[47] Nakatsuka T, Sasaki T, Kaiser ET. Peptide segment coupling catalyzed by the semisynthesis enzyme thiolsubtilisin [J]. Journal of the American Chemical Society, 1987.3808-3810.doi:10.1021/ja00246a064.
[48] Wu P, Hilvert D. Conversion of a protease into an acyl transferase:selenosubtilisin [J]. Journal of the American Chemical Society, 1989.4513-4514.doi:10.1021/ja00194a064.
[49] Wu P, Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic [J]. Journal of the American Chemical Society, 1990.5647-5648.doi:10.1021/ja00170a043.
[50] Liu JQ, Jiang MS, Luo GM. Conversion of trypsin into a selenium-containing enzyme by using chemical mutation [J]. Biotechnology Letters, 1998, (7):693-696.doi:10.1023/A:1005378709179.
[51] Lian G, Ding L, Chen M. A selenium-containing catalytic antibody with type Ⅰ deiodinase activity [J]. Biochemical and Biophysical Research Communications, 2001, (5):1007-1012.doi:10.1006/bbrc.2001.4768.
[52] Kaiser ET. Catalytic activity of enzymes altered at their active sites [J]. Angewandte Chemie International Edition, 1998.913-922.
[53] Sinha RR, Imperiali B. Pyridoxamine-amino acid chimeras in semisynthetic aminotransferase mimics [J]. Protein Engineering, 1997.691-698.doi:10.1093/protein/10.6.691.
[54] Hamachi I, Shinkai S. Chemical modification of the structures and functions of protein by the cofactor reconstitution method [J]. European Journal of Organic Chemistry, 1999.539-549.
[55] Davis RR, Distefano MD. A semisynthetic metalloenzyme based on a protein cavity that catalyzes the enantioselective hydrolysis of ester and amide substrates [J]. Journal of the American Chemical Society, 1997, (48):11643-11652.doi:10.1021/ja970820k.
[56] 罗贵民. 酶工程 [M]. 北京:化学工业出版社, 2003.153.
[57] Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation [J]. Advanced Drug Delivery Reviews, 2002.459-476.doi:10.1016/S0169-409X(02)00022-4.

相似文献/References:

[1]凌辉生,李阳,封琳,等.修饰血红素提高血红蛋白类过氧化物酶活性[J].生物加工过程,2011,9(02):68.[doi:doi:10.3969/j.issn.1672-3678.2011.02.014]
 LING Huisheng,LI Yang,FENG Lin,et al.Improving peroxidase-like activity of hemoglobin by recombining?hemoglobin using chemically modified heme[J].Chinese Journal of Bioprocess Engineering,2011,9(01):68.[doi:doi:10.3969/j.issn.1672-3678.2011.02.014]
[2]孙红颖,曹海石,罗贵民.棕榈酰化超氧化物歧化酶的制备及性质研究[J].生物加工过程,2003,1(01):47.[doi:10.3969/j.issn.1672-3678.2003.01.013]

备注/Memo

备注/Memo:
基金项目:中国科学院资助项目
更新日期/Last Update: 1900-01-01